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RESEARCH 

Primorials in Pi 
Jabari Zakiya 

INTRODUCTION 

or For most people π, i.e. 3.14159…, is the most well-known math 
constant they can recite to at least a few digits. There are many 
algorithms that can generate its digits, with varying speed. Using 

Prime Generator Theory (PGT) we can derive an exquisite formula to 
compute it, that’s been hiding in plain sight (for centuries) that 
heretofore hadn’t been noticed, missed by even the great Leonhard 
Euler, who probably had the first chance (best mindset) to notice it, 
but didn’t. And its starts with his Zeta function [1-4]. 

Zeta function ς(s)
In contemporary math the Euler/Riemann Zeta function expression is 
usually written in this form: 
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But Euler wrote it like this: 
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Written in primorial form it’s: 
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For s = 2 we get: 
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( #)np , which now gives us this exquisite 

formula for π . 
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And now we see a simple formula for π  hidden in the background of 
the Zeta function! We see we can represent (and calculate) π strictly 
with primorials, i.e. consecutive prime factors. We’ll further see not 
only does lurk within the (2 )kς values, but the primorials also π lurk 

within the construction of π . 

But we don’t have to stop with (2),ς as each expression for (2 )kς has 

a factor of 
2k

π in it. 

For s = 2k:  
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The B2k are the 2k-th Bernoulli numbers. Here are the first 8 
expressions for (2 )kς  [5-11]. 

2 4 6 8

(2) (4) (6) (8)6 90 945 9450
π π π π

ς ς ς ς= = = =  

10 12 14 16691 2 3617
(10) (12) (14) (16)93555 638512875 18243225 325641566250

π π π π
ς ς ς ς= = = =

I’ll show we can compute π to increasing accuracy with primorials, 
using its generalized form: 

F 
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ABSTRACT 
Since at least 1734 (when Euler solved the Basel problem), it’s been 
known for the positive even integers s, the Euler Zeta Function 

(EZF) can be written in terms of the even powers of . I 

manipulate its form and find lurking (hidden) in it an exquisite and 
elegant formula for . Thus, not only does the EZF have embedded 

in it, has embedded in its construction primorials of primes.  
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where the 2z kC are the constant rational inverse coefficients of
2k

π

from the (2 )kς expressions. 

2 4 6 8

6 90 945 9450
6 1 945 94501 1 1 1z k z z zC C C C= = = = = = = =  

10 12 14 16

93555 638512875 18243225 325641566250
935551 691 2 3617z z z zC C C C= = = = =

With the 2z kC having form: 
1

2 12
2

(2 )!
( 1)

2
K

kz k
k

k
C

B
+

−= −  (9) 

What we will discover is that the 2z kC coefficients have embedded 

within them the value of π, to increasing digits of accuracy. From their 
starting approximations for π, the primorials boost the number of 
accurate digits higher, as more primes are used in their construction. 

We’ll also discover that from the factorization of the 2z kC numerators 

we can reconstruct their written forms as factors of primorials. 

Geometric interpretation using PGT 
Let’s see how to geometrically understand this conceptually, from the 
perspective of PGT. 

As explained in [1], [2], [3] Prime Generators break the number line 

into modular groups of size #np integers, which contain ( 1) #np −

integer residues, along which all the primes not a factor of #np exist. 

As we increase the modular group size by np we increase the number 

of residues by ( 1).np − . This has the effect of squeezing the primes 

into a smaller and smaller percentage of the integer number space. It’s 
essentially the same process Euler used to squeeze out all the 
composites in the reciprocal integer form (1), (2) of the Zeta function 
to create his multiplicative prime (primorial) form (3). 

Useful for our purposes here, we can model the periodicity of the 
modular groups with a clock. 

Using our generator clock model we can conceptualize the geometric 
meaning of the expression for π . 
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From geometry:  2
c c
d rπ = =  (11) 

where 2 ,r c cπ τ= = with ( ) 2 .tau τ π= Thus when we take generators of 

length #np integers, and fold them into, and model them as clocks 

(modular circles), c p #n= is the circumference of these circles, which 

increase by factors of pn for each larger generator. Thus we get these 

geometric relationships: 
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Thus we see the modular diameters and radii expressions are the 
(principal) 2k-th roots of primordial expressions. Thinking about this 
more extensively, this suggests there may be complex roots, which we 
know come as complex conjugate pairs. This would be consistent with 
the fact that the generator residues come as modular complement 

pairs. We’ll also see for the 2 2, / / .n n n z k n n z kp d p and r pπ τ   

I’ve only scratched the surface here, but I’ll suspend going further 
down this rabbit hole of analysis, as it’s diverging from the principal 
purpose of this paper. However, it presents itself as an interesting area 
Of math to explore and develop, and I encourage others to vigorously 
pursue it if desired. 

Numerical analysis 
Compared to other methods for generating π , the presented method 
is much simpler to understand and remember. And from a Number 
Theory point of view, it also has a conceptual and numerically pleasing 
elegance, which I will show and explain. To demonstrate its utility and 
performance I provide software code to generate some results of its 

accuracy and convergence speed for the first few 2z kC coefficients. 

From this form of the formula: 
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We expand it into: 

1/2
2 1/2 2 1/2 2 1/22

2 3 5
C

(2 1) (3 1) (5 1)
k
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 (15) 

In fact, this is the form of the algorithm the software code uses to 
numerically compute it. 

Notice in the factors 
2 1/2

( 1)
k k

np − we’re raising each to a power 2k, 

then bringing one less than that np  value back down to be almost (but 

less than) np . Using 2 3p =  as an example, we can see the process. 

2 1/2 1/2 1/2
(3 1) (9 1) 8 2.82842...− = − = =
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4 1/4 1/4 1/4
(3 1) (81 1) 80 2.990697...− = − = =

6 1/6 1/6 1/6
(3 1) (729 1) 728 2.99931...− = − = =  

8 1/8 1/8 1/6 1/8
(3 1) (6561 1) 728 6560 2.99994...− = − = = =  

As 2k increases 
2 1/2

( 1)
k k

np − becomes increasingly closer to np . If we 

set np −  to be 
2 1/2

( 1)
k k

np − then the primorial ratios /n np p −  are 

always > 1 but can be made arbitrarily close to 1, as 2 .k→∞  

Thus as 2 :k→∞  

2 3 5 7
1.0000...1.999... 2.999... 4.999... 6.999...

n

p n

p
p −

= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅→∏   (15) 

So if the primorial ratios are marching in unison toward 1 where do 
we get π  from? Well, there’s only one place left its digits can come 
from. And this is what we discover, apparently missed by even Euler.   

1/2 1/2

2C 6 2.449489...z = =  

1/4 1/4

4C 90 3.080070...z = =  

1/6 1/6

6C 945 3.132602...z = =  

1/8 1/8

8C 9450 3.139995...z = =  

1/10 1/10

10C 93555 3.141280...z = =  

1/12 1/12

12C (638512875 / 691) 3.141528...z = =  

We can theoretically get arbitrary convergence with a few (or just 1p = 

2) primes. However in the real world, at least with using personal
computers, calculators, etc, we will soon hit the wall in reaching the
limit on the number of digits floating point implementations can
accurately represent. But that is an implementation issue true for all
numerical (floating point) operations performing computations with
small numbers. However, software algebra systems like Pari/GP [10],
et al, are specifically designed to provide arbitrary precision in such
situations, which I’ll use to show some calculations.

Values for z2kC

We’ve previously seen that: 
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and therefore the z2kC  are: 
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From [5], 
2

(2 ) ,
k

n nA k Bς π=  and thus 2C ,n
z k n

A
B= where nA and nB

are positive integers for n even. 

There are lists of some of them already pre-computed, or we can 
compute them, using online resources. 

Sequence lists for the first 250 can be found on the On-Line 

Encyclopedia of Integer Sequences (OEIS) website, with the 2kA – 

A002432 sequence and 2kB – A046988 sequence at [11]. 

We can get many, many more using the WolframAlpha math engine. 

As an example, putting in the searchbar zeta(18), returns (43867 π^18) 

/ 38979295480125, making 18C z = 38979295480125 / 43867. These 

numbers grow fast. For zeta(250) we get for 250A and 250B , 

A250=757783425145199903951440142258505312287916852546978
3889771482580471299697556140678102433420069852311782394
6684550196550752797867316412913406659033139766132929867
0769469427638621301332168862607727362636072208375551996
0623995664925415614342891786954820102266673859922242112
1372972346925680848155864177245403685649611860640062092
8628795853239016491782077621215583653516313384285902484
19702835036559918080456554889678955078125 

B250=390910133089561433997058684885444503280677679869769
0058731856271636606737446563047969362779198681815937490
9975797473729786383620775709648303500553694838976502165
7262148702222512700610047178264090235751465369826826453
5930011285025251204753835385516031169725748375567261264
71606175751529391663117616 

and then 
1/250 1/250

250 250 250C ( / )z A B= (which I’ll show later gives the first 78 

accurate digits of π ) and from there we can boost the number of digits 
further by the EZF primorials multiplications shown in (15), which we 
see from the short Ruby code that follows, starting with the first few 

2C z k values. 

From just looking at these values you can begin to image the scale of 
their sizes for larger coefficients. Also as their values increase, they will 
contain more and more accurate digits of π . And as there are an 

unending number of 2C z k coefficients, there are an unending number 

of π digits they will represent, which can then be boosted to even 
higher accuracy by multiplying them by the EZF primorial ratios. 

Thus you can see (even feel) this deep structural connection between
π  and the primes, and primes to circles, and in general to the concept 
of periodicity of functions, derived from the Euler Zeta Function (Table 
1). 

Below is Ruby code to generate π to 15 digits (when capable) using 

the coefficients for 2 16 .z zC C−  
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TABLE 1 
This table shows the speed of convergence up to pi_Z16. On my laptop using Ruby, I was able to get up to 15 significant digits of accuracy 
until the fractions got too small to generate more accurate digits. 

Pi digits pi_Z2 pi_Z4 pi_Z6 pi_Z8 pi_Z10 pi_Z12 pi_Z14 pi_Z16 
m primes m primes m primes m primes m primes m primes m primes m primes 

3. 2 
3.1 5 1 
3.14 38 1 
3.141 76 3 
3.1415 301 5 2 1 1 
3.14159 516 10 2 
3.141592 16,663 14 4 3 1 

3.1415926 142,215 26 6 2 1 1 
3.14159265 1,534,367 51 9 4 3 2 
3.141592653 80 11 5 
3.1415926535 132 15 6 4 3 2 
3.14159265358 240 21 8 5 2 
3.141592653589 481 30 10 6 4 3 

3.1415926535897 837 40 13 7 5 3 
3.14159265358979 18 6 4 4 

Using arbitrary precision software we’d see we can boost the initial true 
digits to arbitrary size by using more primes. Thus we can get arbitrary 

digits from the   alone, and from 2z kC using the EZF primorials. This 

approach for generating π may be interesting to compare to the 
Chudnovsky algorithm [6], which (as of March 21, 2022) computed it 
to a record 100 trillion digits, and in general, to test the speed and 
numerical accuracy of super computers, et al. 

Factoring into primorials 

The 2z kC  numerators 2kA can be written as primorial factors, first 

factoring them and then completing their primorials from the prime 
factors, and including factors of 2 in the denominator when necessary. 

2zC  is easy:  2 6 2 3 3# .zC = = ⋅ =  

For 4zC :  
2

4

2 3 3#5#
90 2 3 5 3 (2 3 5) 3 5 # 5 #2 2#zC

⋅
= = ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ = ⋅ =

The process continues in this straightforward manner, and can be done 
visually by just completing the primorial for the largest remaining 
prime factor, always accounting for factors of 2 in the denominator. 

2 2 2 2 23 2
2 3 36

2 3 5 7 3 7# 2 3 7# (2 3) 7# (3#) 7#
945 3 5 7 3 2 2 22 2 (2#)zC

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
= = ⋅ ⋅ = ⋅ = = ⋅ = =

With practice, you can just write down the primorials after each prime 
factor step, as shown here. 

4 3

920

1531329465290625 (3#) (5#) 11#19#
174611 (2#) 174611zC = =
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9 5 2 2
1531329465290625 3 5 7 11 13 17 19= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

8 43 5 7 11 19#
2

⋅ ⋅ ⋅ ⋅
=

7 3

2
3 5 11# 19#

2
⋅ ⋅ ⋅

=

4 3

9
3 (5#) 11# 19#

2
⋅ ⋅ ⋅

=

4 3

9
(3#) (5#) 11# 19#

(2#)
⋅

=

While there can be different representations for 2z kC the primorial 

factorizations reveal their inherent structure based upon the building 
up of small primes. 

Thus, while (26)ς  can be written as: 
24 26

2426

2 76977927 27!
(26) 27! 2 76977927zC

π
ς

⋅ ⋅
= → =

⋅

it doesn’t reveal its primes structure written as: 
5 3

1126

(3#) (5#) 7#11#23#
(2#) 1315862zC =

Another amazing property you’ll notice of the primorial forms of the 

2kA integers is that the highest primorial prime value pm of their 

factoring is the closest prime less than or greater than the value 2k. 

Let’s put all the pieces together and show the computation of 
1/250

250zC to 

100 digits, giving 78 digits of π . 

Growth of Pi digits for 2z kC

Two natural questions are: 1) for a given 2z kC how many accurate π

digits will it contain?, and 2) what 2z kC will first give a certain number 

of digits? The plot below shows the π digits for the first 250 2z kC . 

Figure 1) We see there’s a clear linear relationship, thus we can create the 
equation of its line. 

We see there’s a clear linear relationship, thus we can create the 
equation of its line, .y mk C= +  

From the data, at k=1, digits =0, and k=250, digits =152, from which 
we can get the slope m. 

Therefore the slope is:   m 152 / 250 0.608= =   (19) 

and the line equation: 0.608y k=  (20) 

We now have a deterministic way to answer these two questions about 

the growth of π digits in 2z kC . 

Thus, for the 1000th coefficient, from 20000.608(1000), zy C= gives 

about the first 608 digits of π , and from 1000 / 0.608,k = we see that to 

get the first 1000 digits of π we need to use up to about 3290C .z  

Thus, though the integers 2 2A k kand B grow exponentially, their ratios 

2k-th roots grow linearly to π . 
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FURTHER RESEARCH 

We also know for some number z there are n root values for 
1/

,
n

z some 

as complex conjugate pairs. 

Thus for example,
1/8 1/8

8C 9450z = gives us 7 more roots besides the 

principal root π approximation. 

(3.14036879+0.0i), (2.22057607+2.22057607i), (0.0+3.14036879i), 
(-2.22057607+2.22057607i) 

(-3.14036879+0.0i), (-2.22057607-2.22057607i), (0.0-3.14036879i), 
(2.22057607-2.22057607i) 

What do the other roots mean in this context (if any), especially the 
complex ones? How do they fit in? 
These, and other questions, may open up new areas of research 
pursuits, and more amazing discoveries. 

CONCLUSION 

Using Prime Generator Theory as the mathematical|conceptual 
framework to start from, I looked at Euler's Zeta function differently 
since when he solved the Basel problem in 1734. Discovered lurking 
within its structure, is a simple/elegant formula to compute π to 
arbitrary accuracy, previously missed. 

Specifically for s = 2k, we see π is embedded in the coefficients 2k-th 
roots to arbitrary accuracy, which can then be boosted to higher 
arbitrary accuracy by primorial multiplications. Their numerators can 
be factored into consecutive small primes, and written as primorial 
factors, whose largest is the closest prime less/greater than 2k. Finally, 
we find we can predict the number of digits for each coefficient, and 
which coefficients will provide a desired number of digits. Thus we find 
that primorials (primes) are inextricably linked to π , and thus to the 
geometry of circles, which heretofore was totally unexpected. 
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