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ABSTRACT
Since at least 1734 (when Euler solved the Basel problem), it’s been

known for the positive even integers s, the Euler Zeta Function

(EZF) ¢(s) can be written in terms of the even powers of PR

manipulate its form and find lurking (hidden) in it an exquisite and
elegant formula for 7. Thus, not only does the EZF have 7 embedded

in it, 7 has embedded in its construction primorials of primes.
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INTRODUCTION

or For most people T, i.e. 3.14159..., is the most well-known math
Fconstant they can recite to at least a few digits. There are many

algorithms that can generate its digits, with varying speed. Using
Prime Generator Theory (PGT) we can derive an exquisite formula to
compute it, that’s been hiding in plain sight (for centuries) that
heretofore hadn’t been noticed, missed by even the great Leonhard
Euler, who probably had the first chance (best mindset) to notice it,
but didn’t. And its starts with his Zeta function [1-4].

Zeta function ¢(s)

In contemporary math the Euler/Riemann Zeta function expression is
usually written in this form:
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And now we see a simple formula for # hidden in the background of
the Zeta function! We see we can represent (and calculate) 7 strictly
with primorials, i.e. consecutive prime factors. We'll further see not
only does lurk within the ¢(2k) values, but the primorials also 7 lurk

within the construction of 7.

But we don’t have to stop with ¢(2), as each expression for ¢(2k) has

%
a factor of z~ init.
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The By are the 2k-th Bernoulli numbers. Here are the first 8
expressions for ¢(2k) [5-11].

2" Hr 6" g
s( )—? s( )—% s( )_W s( )—m
7 6917 271 361771

— V= V= )=
0033555 WD-gmmn W mmms 19350156050

I'll show we can compute 7 to increasing accuracy with primorials,
using its generalized form:
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where the C_,, are the constant rational inverse coefficients of 7

from the ¢(2k) expressions.

6 90 945 9450
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With the C_,, having form: C_,, =(-1) Fusa )

What we will discover is that the C_,, coefficients have embedded

within them the value of T, to increasing digits of accuracy. From their
starting approximations for T, the primorials boost the number of
accurate digits higher, as more primes are used in their construction.

We'll also discover that from the factorization of the C_,, numerators

we can reconstruct their written forms as factors of primorials.

Geometric interpretation using PGT
Let’s see how to geometrically understand this conceptually, from the
perspective of PGT.

As explained in [1], [2], [3] Prime Generators break the number line

into modular groups of size p, # integers, which contain (p, - 1) #
integer residues, along which all the primes not a factor of p, # exist.
As we increase the modular group size by p, we increase the number

of residues by (p, -1).. This has the effect of squeezing the primes

into a smaller and smaller percentage of the integer number space. It’s
essentially the same process Euler used to squeeze out all the
composites in the reciprocal integer form (1), (2) of the Zeta function

to create his multiplicative prime (primorial) form (3).

Useful for our purposes here, we can model the periodicity of the

modular groups with a clock.

Using our generator clock model we can conceptualize the geometric
meaning of the expression for 7.

2

12k P #
ﬁ_czzk (pnﬂ_l)nk# (10)

c
From geometry: 7= T=% (11)
where r = c/27r = ¢/7, with (tau)r=27. Thus when we take generators of
length p # integers, and fold them into, and model them as clocks
(modular circles), c=p #is the circumference of these circles, which
increase by factors of p, for each larger generator. Thus we get these

geometric relationships:
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Thus we see the modular diameters and radii expressions are the
(principal) 2k-th roots of primordial expressions. Thinking about this
more extensively, this suggests there may be complex roots, which we
know come as complex conjugate pairs. This would be consistent with
the fact that the generator residues come as modular complement

pairs. We'll also see for the p,.d Op /z_, andrOp Iz, .
I've only scratched the surface here, but I'll suspend going further
down this rabbit hole of analysis, as it’s diverging from the principal
purpose of this paper. However, it presents itself as an interesting area
Of math to explore and develop, and I encourage others to vigorously

pursue it if desired.

Numerical analysis

Compared to other methods for generating 7, the presented method
is much simpler to understand and remember. And from a Number
Theory point of view, it also has a conceptual and numerically pleasing
elegance, which I will show and explain. To demonstrate its utility and
performance | provide software code to generate some results of its

accuracy and convergence speed for the first few C_, coefficients.

From this form of the formula:
12k
P
7=C_y H 2k _\2k (14)
p (P -D

We expand it into:

12k 2 3 5

2k QIR )T Ry (S (15)

T =

In fact, this is the form of the algorithm the software code uses to
numerically compute it.

% 12k

Notice in the factors (p. -1) we're raising each to a power 2k,
n

then bringing one less than that p value back down to be almost (but

less than) p, . Using p, =3 as an example, we can see the process.

2 1/2 1/2 1/2
(B -1 =(9-1) =8  =2.82842..
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4 1/4 1/4 1/4
(3 -1) =(81-1) =80 =2.990697...
6 1/6 1/6 1/6
(3 -1) =(729-1) =728 =2.99931...
8 /8 1/8 1/6 1/8
(3 -1) =(6561-1) =728 =6560 =2.99994...

w12k
As 2k increases (p, —1) ~ becomes increasingly closer to p, . If we

2% 12k o .
set p,_ to be (p, 1) then the primorial ratios p, /p _ are

n—

always > 1 but can be made arbitrarily close to 1, as 2k—»>c.

Thus as 2k —o :

2 3 5 7
Py _ -
1:[”’1.999... 2999... 4999, 6999 10000 (15)

So if the primorial ratios are marching in unison toward 1 where do
we get 7 from? Well, there’s only one place left its digits can come
from. And this is what we discover, apparently missed by even Euler.

172 172
C,, =6 =2449489..

1/

4 1/4
C,, =90  =3.080070..

/6 /6
C., =945 =3.132602...

178 178
C., =9450  =3.139995...

110 110
C, o =93555  =3.141280...

112 12
C,,, =(638512875/691)  =3.141528...

We can theoretically get arbitrary convergence with a few (or just p, =

2) primes. However in the real world, at least with using personal
computers, calculators, etc, we will soon hit the wall in reaching the
limit on the number of digits floating point implementations can
accurately represent. But that is an implementation issue true for all
numerical (floating point) operations performing computations with
small numbers. However, software algebra systems like Pari/GP [10],
et al, are specifically designed to provide arbitrary precision in such
situations, which I'll use to show some calculations.

Values for €,

We've previously seen that:

11 By, 2%
=" S (17)

and therefore the C_, are:

Cop =D e - (18)
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2k A,
From [5], 4,¢(2k)=B z , and thus C_,, =B—’, where 4 and B

n

are positive integers for n even.

There are lists of some of them already pre-computed, or we can
compute them, using online resources.

Sequence lists for the first 250 can be found on the On-Line

Encyclopedia of Integer Sequences (OEIS) website, with the 4,, -

A002432 sequence and B,, - A046988 sequence at [11].

We can get many, many more using the WolframAlpha math engine.

As an example, putting in the searchbar zeta(18), returns (43867 ©18)
/ 38979295480125, making C_,, = 38979295480125 / 43867. These

numbers grow fast. For zeta(250) we get for 4, and B,

Ags0=7511834251451999039514401422585053122879168525469178
3889771482580471299697556140678102433420069852311782394
6684550196550752797867316412913406659033139766132929867
0769469427638621301332168862607727362636072208375551996
0623995664925415614342891786954820102266673859922242112
1372972346925680848155864177245403685649611860640062092
8628795853239016491782077621215583653516313384285902484
19702835036559918080456554889678955078125

B,50=390910133089561433997058684885444503280677679869769
0058731856271636606737446563047969362779198681815937490
9975797413729786383620775709648303500553694838976502165
7262148702222512700610047178264090235751465369826826453
5930011285025251204753835385516031169725748375567261264
71606175751529391663117616

1/250 s, . )
and then C_,; = (4,5, / B,s;)  (which I'll show later gives the first 78
accurate digits of 7 ) and from there we can boost the number of digits
further by the EZF primorials multiplications shown in (15), which we

see from the short Ruby code that follows, starting with the first few

C,,, values.

From just looking at these values you can begin to image the scale of
their sizes for larger coefficients. Also as their values increase, they will
contain more and more accurate digits of z. And as there are an

unending number of Coo coefficients, there are an unending number

of z digits they will represent, which can then be boosted to even
higher accuracy by multiplying them by the EZF primorial ratios.

Thus you can see (even feel) this deep structural connection between
7 and the primes, and primes to circles, and in general to the concept

of periodicity of functions, derived from the Euler Zeta Function (Table

1).

Below is Ruby code to generate 7 to 15 digits (when capable) using

the coefficients for C_, - C_.
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require "primes/utils"

def pi_Z2k(k2, cz2k, primes)
pi, exp = 1.0, 1.0/Kk2
primes.each do |p|
pi "=p/ (p""kZ - 1)""exp
end
pi

cz2k**exp end

# Example inputs for Zeta(8) nth = 18
nth_prime = nth.nthprime

n_primes = nth_prime.primes k2, cz?2k = 8,

9450

puts "\nUsing #[nth} primes up to
pi = pi_Z2k(k2, cz?k, n_primes)
puts "pi_ Z# K2} = #pi} \n"

TABLE 1

# Load primes-utils RubyGem

# Select number of primes to use
# 3et prime value of nth prime

# Generate array of first n primes
# Set Peta(8) parameters

#{nth_prime}
# Using 18 primes uo to 61
# pi_ 78 = 3.141592653589792

This table shows the speed of convergence up to pi_Z16. On my laptop using Ruby, I was able to get up to 15 significant digits of accuracy

until the fractions got too small to generate more accurate digits.

Pi digits pi_Z2 pi_Z4 pi_Z6 pi_Z8 pi_Z10 pi_Z12 pi_Z14 pi_Z16
m primes m primes m primes m primes m primes m primes m primes m primes
3. 2
3.1 5 1
3.14 38 1
3.141 76 3
3.1415 301 5 2 1 1
3.14159 516 10 2
3.141592 16,663 14 3 1
3.1415926 142,215 26 2 1 1
3.14159265 1,534,367 51 9 4 3 2
3.141592653 80 11 5
3.1415926535 132 15 6 4 3 2
3.14159265358 240 21 8 5 2
3.141592653589 481 30 10 6 4 3
3.1415926535897 837 40 13 7 5
3.14159265358979 18 6 4 4
Using arbitrary precision software we’d see we can boost the initial true Forc_,: €, =90=2- 353 (2:3:5)=3-5#= 23, 5#= %

digits to arbitrary size by using more primes. Thus we can get arbitrary
digits from the alone, and from C_,, using the EZF primorials. This

approach for generating = may be interesting to compare to the

Chudnovsky algorithm [6], which (as of March 21, 2022) computed it
to a record 100 trillion digits, and in general, to test the speed and
numerical accuracy of super computers, et al.

Factoring into primorials
The C_,, numerators 4,, can be written as primorial factors, first

factoring them and then completing their primorials from the prime
factors, and including factors of 2 in the denominator when necessary.

C_, iseasy: C,=6=23=3#.

The process continues in this straightforward manner, and can be done
visually by just completing the primorial for the largest remaining
prime factor, always accounting for factors of 2 in the denominator.

2 2-3.5.7 374 2230 74 (23 TH (B#PTH

3
CLgm085=3 5723 S e T e

With practice, you can just write down the primorials after each prime
factor step, as shown here.

1531329465290625  (3#)* (5#)° 11#19#
220 © 174611 (2#)°174611

J Pure Appl Math Vol 8 No 1 January 2024



9 5 2 2
1531329465290625=3 -5 -7 -11 -13-17-19

3¥.54 701 19%
- 2
3755 11# - 19#

-
2

3. (5#)° 114 194
o
2

_G# (#1148 19%
B @#’

While there can be different representations for C_,, the primorial

factorizations reveal their inherent structure based upon the building
up of small primes.

Thus, while ¢(26) can be written as:

2 224.76977927 - z2° c 27!
5(26)= 27 %6 T 2776977927

it doesn’t reveal its primes structure written as:

G#)° (5#)° TH11#23#
226~ (2#)1315862

Another amazing property you'll notice of the primorial forms of the
4, integers is that the highest primorial prime value pn of their
factoring is the closest prime less than or greater than the value 2k.

Let’s put all the pieces together and show the computation of Ci/;:; to

100 digits, giving 78 digits of 7 .

Agso = T57783425145199903951440142258505312287916852546978388977148258047129697556
140678102433420069852311782394668455019655075279786731641291340665903313976
613292986707694694276386213013321688626077273626360722083755519960623995664
9254156143428917869548201022666738599222421121372972346925680848 15586417724
540368564961186064006209286287958532390164917820776212155836535163133842859
0248419702835036559918080456554889678955078125

Aggy = 3125570 112 130171198 9310 908 318 378 418 43P 470 53t 50t
614678 71% - 73% 79 83% . 897 97 - 1017 1087 1072 1097 - 1132127 131137 -
130149 151157163 167- 173 179 181 191103197199 211 223227229 -
233230 241251

(347 (5) () P (114 (13 174194 (34 (L PALATHO L 8311342514

Ay = 2

Byso = 39091013308956143399705868488544450328067767986976900587318562 7163660673744
65630479603627791986818159374900975797473729786383620775709648 3035005336948
389765021657262148702222512700610047178264090235751465369826826453393001 128
502525120475383538551603116972574837556726126471606175751529391663117616
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Par1/GP calculator output (edited)

7 325 =
75778342514519996395144614225856531228791685254657838897714825808471296975561406781
8243342006985231178239466845501965587527978673164129134066590331397661329298670769
4694276386213013321688626077273626360722083755519960623995664925415614342891786954
8201822666738599222421121372972346925680848155864177245403685649611860640062002862
8795853239016491782077621215583653516313384285902484197028356365599180804565548896
78955678125

7 b2se =
3969101330695614339970586848654445032606776798697690058731856271636606737446563047
9693627791986818159374909975797473728766363620775709648303500553624636976502165726
2148702222512700610047178264096235751465369626826453593001128502525126475383538551
663116972574637556726126471606175751529391663117616

7 \p 160
realprecision = 115 significant digits (108 digits displayed)

7 £z250 = 1.8*a250/b250
1.93851057059087316478149489348121055930761091205080073184216793037336921512361326
3067816173293718294 E124

7 cz256°(1/250)
3.14159265356979323846264338327950286419716939937510582097494459230761640628620205

30891767362683102349

Growth of Pi digits for C_,,

Two natural questions are: 1) for a given C_,, how many accurate =
digits will it contain?, and 2) what C_,, will first give a certain number

of digits? The plot below shows the # digits for the first 250 C_,, .

Cz2k Pi digits
160
140
120
100

80 s Pj digits
60
40

Number of Pi digits

20

R R I T T T TR TP PR R e
TR FEPR S E P IS EFEF PP

K number of Cz2k
Figure 1) We see there’s a clear linear relationship, thus we can create the
equation of its line.

We see there’s a clear linear relationship, thus we can create the

equation of its line, y=mk + C.

From the data, at k=1, digits =0, and k=250, digits =152, from which
we can get the slope m.

Therefore the slope is:  m =152 /250 = 0.608 (19)
and the line equation: y = 0.608% (20)

We now have a deterministic way to answer these two questions about

the growth of zdigitsincC_,, .

Thus, for the 1000™ coefficient, from y = 0.608(1000), C_o00 EiVES
about the first 608 digits of 7z, and from & =1000 / 0.608, we see that to

get the first 1000 digits of 7 we need to use up to about C_ ..

Thus, though the integers A, and B,, grow exponentially, their ratios

2k-th roots grow linearly to 7 .
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Un
We also know for some number z there are n root values for z , some

as complex conjugate pairs.

1/8 /8 . .
Thus for example, C_, =9450  gives us 7 more roots besides the

principal root z approximation.

(3.14036879+0.0i), (2.22057607+2.22057607i), (0.0+3.14036879i),
(-2.22057607+2.220576071)

(-3.14036879+0.01), (-2.22057607-2.22057607i), (0.0-3.14036879i),
(2.22057607-2.22057607i)

What do the other roots mean in this context (if any), especially the
complex ones! How do they fit in?

These, and other questions, may open up new areas of research
pursuits, and more amazing discoveries.

CONCLUSION

Using Prime Generator Theory as the mathematical|conceptual
framework to start from, I looked at Euler's Zeta function differently
since when he solved the Basel problem in 1734. Discovered lurking
within its structure, is a simple/elegant formula to compute 7 to
arbitrary accuracy, previously missed.

Specifically for s = 2k, we see 7 is embedded in the coefficients 2k-th
roots to arbitrary accuracy, which can then be boosted to higher
arbitrary accuracy by primorial multiplications. Their numerators can
be factored into consecutive small primes, and written as primorial
factors, whose largest is the closest prime less/greater than 2k. Finally,
we find we can predict the number of digits for each coefficient, and
which coefficients will provide a desired number of digits. Thus we find
that primorials (primes) are inextricably linked to 7, and thus to the

geometry of circles, which heretofore was totally unexpected.
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= (34)°(54)° (74)7 132104374 /(24)'® 26315271553053477373

Coge =

2403467618492375776343276883084375
308420411983322

= (3#) 052 (7#)? 11F1T#374/(2#)' 308420411983322

Coag =

20080431172289638826798401128390556640625
261082718496449122051

(3)°(54)° THLIF 134104414/ (24)1° 261082718496449122031

Con =

2307789180818960127712504427864667427734375
3040195287836141605382

= (34) (57 (T)Y 134194434 /(24)™ 3040195287836141605382

Czdl?

37913679347025773526706008457776679169921875
506059446896382288186

= (34 O (5N TS 134234434 1 (24) 50B0594AG8963822588186

czf.!l -

7670102214448301053033358480610212529462890625
103730628103289071874428

<54l =

= (34050 T DL 10AATIE ) 108T3062810280071874428

4093648603384274996519698921478879580162286669921875
H609403368997817686249127047

CZJ-S =

= (340 (5 T 13HLTHO34AT (248) 3600033680078 LTB6240127547

2852587714575467644633636352523744 14183254365 234375

Camn = 396045764192863 71856998202

= (3) (55 (T (114)F 1342384074 (24)% 39601576419286371856998202
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Ch)? = 2.449489742783178

C11* = 3.080070288241023
Cl4° = 3.132602581012435
C1L® = 3.1399951412959073
L0 = 3.1412803693973714
CH1? — 3.1415282368670168
CH 1t~ 3.1415789099913694

C1e® = 3.1415896529495364

CHIF = 3.1415919871238964
C142% = 3.1415925037418626
'1,"’22 — =4 4 [
C.55" = 3.1415926195391455
C12Y = 3141592645 5
1R — 3.1415926457870995

128 — 3.141592651789231

Cl2% = 3.1415926531718115

¥1430 _ 3. 141502653492265

1432 _ 3141592653566935
1431 3.1415926535844148

435 . 3.141592653588523

Cl43% — 3.1415926535894925

Primorials in Pi



Zakiya

1AA0 3 1415926535807 22

Az 3.1415926535830776G2
e} 3141502653589 T89

C1AA% . 3.1415926535897922
~1 /48

Coas = 3.1415926535897927

CL5% — 3.141592653589793

zal
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