
PT sort: A non-comparison sort using the sum of the power of two
Yu-Cheng Liu*

Liu YC. PT sort: A non-comparison sort using the sum of the 
power of two. J Pure Appl Math. 2025;9(2):1-5.

ABSTRACT

Sorting algorithm is one of the most important fields in computer science. 
People learn sort algorithms before learning other advanced algorithms. 
Since sorting is important, computer scientists study and try to create new 
sorting algorithms. The paper is composed of five themed sections: 
Introduction, method, analyzis, experiment result, and conclusion. The first 
section of this paper will give a brief overview of the algorithm and 
introduce a  new way to sort a list  called PT sort, a  non comparison integer

sorting algorithm that is based on subtracting the largest exponent with radix 
two, then using recursion and traverse on every separated list. Section two 
and three begins by laying out the theoretical dimensions of the research, 
proposes the methodology, and analyzes the time complexity of PT sort. The 
forth section presents the findings of the research, focusing on the result of 
the experiment. The time complexity and space complexity of PT sort is 
approximatly 0 (n∙ log2 r) where n is the number of the numbers being sorted 
and r is the largest number in the list. 

Keywords: Sorting algorithm; Recursion; Non-comparison; Integer

INTRODUCTION

Algorithm is a defined computational procedure that takes values with

input and output [1]. Algorithm is a major area of interest within the field
of computer science. Algorithms play a significant role while solving
computational problems. In other words, everything on the computer
involved at least one algorithm. Sorting techniques are considerably basic
among the algorithms because a sorting algorithm is just a method to
arrange elements in order. However, this field has enormous potential for
people. There are lots of sorting algorithms. Every sorting technique has a
unique strategy. Different sorting techniques can be used in different
situations. In this research, I propose a new sorting strategy, PT sort. This
technique is based on subtracting the largest exponent with the base of 2,
then using recursion and traverse every separated list. This section
introduces several sort techniques. These sorting techniques are chosen for
the connection with PT sort. The further comparison will display in
analyzis.

Review of some existing non-comparison sort algorithm
and merge sort

Merge sort: Merge sort is the earliest sort that uses the divide and conquer
algorithm that was invented by John Von Neumann in 1945 [2]. Wikipedia
concludes its steps:

• Divide the unsorted list into n sublists, each containing one element (a
list of one element is considered sorted).

• Repeatedly merge sublists to produce new sorted sublists until only one
sublist is remaining. This will be the sorted list [3]. The average time
complexity is O (n log n).

Pigeonhole sort: Pigeonhole sorting can apply for sorting lists when n,
number of elements, and N, the length of the maximum value of possible
key values, are similar [4]. We seldom use pigeon sort when choosing a
sorting algorithm because it rarely exceeds other sorting algorithms in
versatility, integrity, and especially speed. The other one, bucket sort, is
more efficient than this one [5]. The working principle of the pigeon
algorithm is as follows:

• Given an array. Set up a support array as “Pigeonhole”. Create
pigeonholes for every key in the range of the array.

• Traversal the array put each value that corresponds to the key value into
the pigeonhole. Every pigeonhole contains a list of all values of the
same key.

• Traversal every value in each pigeonholes and put the elements in the
original array [6].

Bucket sort: Bucket sort split the list equally between every bucket. Then
using another sorting algorithm to sort each bucket. It is a recapitulation of
pigeonhole sort [7]. The bucket sorting works as follows:

• Set an array that represents empty buckets.
• Divide the original array and put the elements in the buckets.
• Sort every non empty bucket 4. Visit every bucket orderly and put the

elements into the original list. Bucket sort’s average time complexity is O
(n+(n2/k)+k). However, bucket sort sacrifices space to sort the  array. Its
worst-case space complexity is O (n · k)

Counting sort: Counting sort is an integer sorting algorithm. It is efficient
when the difference between the maximum key and the minimum key in
the list is small. Counting sort use key as indexes to sort arrays, so it is not a
comparison sort. It is similar to bucket sort on the average time complexity
for doing the same task but counting sort does not need a link list and
dynamic array [8,9]. The counting sorting works as follows:

• Create an array of k+1 zero, k is the maximum key of the array.
• Go through the array and count every element.
• Travalsal the new array and take out every element into a new list. The

time complexity of counting sort is O(n+k) and its worst case space
complexity is O(n+k).

Radix sort: When the integer list has a large maximum key, radix sort is
better than counting sort. The origin of Radix sort can back to Herman
Hollerith's work on a tabulating machine in 1887. Radix sort has two
specialized variants which are Least Significant Digital (LSD) and Most
Significant Digital (MSD). Radix sort can use on data that is lexicographical.
Radix sort is a non-comparison sorting algorithm. The counting sorting
works as follows:

• Unified every element into the same digit length by padding zeros.

RESEARCH ARTICLE

Correspondence: Yu-Cheng Liu, Department of Mathematics, University of Waterloo, Ontario, Canada; E-mail: 3359767@gmail.com

Received: 12-Jun-2023, Manuscript No. PULJPAM-23-6512; Editor assigned: 14-Jun-2023, PreQC No. PULJPAM-23-6512 (PQ); Reviewed: 27-Jun-2023, QC 
No. PULJPAM-23-6512; Revised: 10-Mar-2025, Manuscript No. PULJPAM-23-6512 (R); Published: 17-Mar-2025, DOI: 10.37532/puljfdr.25.9(2).1-5

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://
creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is
properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

J Pure Appl Math Vol.9 No.2 2025 1

Department of Mathematics, University of Waterloo, Ontario, Canada



• Sort numbers from the lowest digit to the highest digit. In this way,
from the lowest order to the highest order, the sequence becomes an
ordered sequence. The time complexity of radix sort is O(n.k), where n
is the number of sorted elements and k is the number of digits.

MATERIALS AND METHODS

Basic idea

In this section, I am explaining the main idea of PT sort. The basic idea of 
PT sort is simple. Every number can convert to a binary number; for instant, 
41 in binary is 101001 which also 25+23+20. We can also get 5 from the 
integer part of log2 41. The next step is to assign the number to the new list 
arr. 41 will be assigned to the group which contains any numbers between 
25 and 26 (Figure 1). After assigned n numbers, PT sort applies recursion on 
every group. The easiest way to implement recursion is to subtract the 
numbers by 2p. P is the largest power of 2 which smaller or equal to the 
element. In the first loop P is 0. In the following recursion, P is the index of 
the list. In this case, P is 5 since this group is for numbers between 25 and 
26. Recursion stops when every element in the group is the same or there is
only 0 or 1 in the group when P=0. Next, the algorithm starts to merge.
Numbers add back what they have subtracted when merging. Elements are
collected in list S. Return S when the merge is done.

Algorithm

To start PT sort (L, P), we need the input list L which contains n numbers. 
The largest power of 2, P, is 0. N in the algorithm is 2p. C is the 
current element of the loop. i is the index of the sublist. S is the sorted list 
that PT sort returns. arrx is the new list which contains child lists. S is the 
list that collects elements in the arrx where x is the recursion layer. 
For the algorithm, there are two insert id for one and zero. PT sort work 
like the following steps:

• Subtract every element C from the list by N, put the number into the
different lists in arr. Every list has its range determined by its index
number; for example, the list with index 2 contains the elements with a
range is between 22 to 23.

• By the end of the first loop, every element will be assigned to a list
based on its value. Then, PT sort will loop every list in arr. PT sort will
be applied on the list as recursion, and P is the index of the list subtract
1.

• Do step one to step three until the list is empty or has only one distinct
element. The numbers will add back what they have subtracted while
merging and return list S.

The following section displays the pseudocode and the flowchart of PT sort
in Python style (Figure 2).

Example:

An example list is being sorted by PT sort in this section. Using random 
number generator, we get a list L with 10 numbers which is the value of n.

Steps:

• Create a new empty list arrx which recursion layer, x, is 0. The largest
power of 2 number, P, is 0 in the first layer (Figure 3).

Figure 3: arr0.

• Loop the list L. For every element C, the first element of the list is 45.
• log2 C is being calculated and taken the integer part . In this step, log2

45 have the value 5.
• Check if the arrx has ⌊ log2 C ⌋ sublists where ⌊⌋ is the floor function,

which gives the largest integer less than or equal to x. If it has, add C
into the sublist with index 5. Otherwise create the sublists and add C
into it. If the layer x is not 0, the numbers should substract 2P before
adding into the sublist (Figures 4 and 5).

 After looping the whole L, the arr0 should be this:

Figure 5: arr0 after the first loop.

• In the arr, each sublist contain numbers that the numbers are in the
range of 2i<C<2i+1 where i is the index of the sublist. In Figure 6, 31
and 17 (before substract) are in the sublist with index 4.

• After processing all the elements in the L. PT sort uses recursion on
each of the sublists. arr0 is going to be L and arr1 is created. If the
sublist is empty, only has all same values, or only contains 0 and 1, the
process of the current sublist is done. Otherwise, apply steps 1 and 2 to
every sublist. Figure 6 is [31,17], with P=4, in arr0. After applying step 1
and 2, it becomes arr1 in Figure 6:

Figure 6: arr1 after the first loop.

• From the instruct in Figure 7, all the sublists in the arr1 are done.
Every element in the sublists form to a list S after add of the numbers
that they are substrate, using C+2P. After adding back. The elements in
sublists of arr1 are conbined and return. The (31,17) in arr0 is replaced
by the new list (17,31) which is after processed.

Figure 7: arr0 after finish processing arr1 of (31,17) in Figure 6.

• Then, PTsort is processing the next sublist in arr0 which is
(45,37,34,35). Using the same stepts. A sorted sublist replaces the
current sublist. This also apply on the next sublist.

• Combine all elements in sublists of arr0. They do not need to add
numbers because arr0 does not substract numbers (Figure 8).

Figure 8: The final return list S.

Liu YC

2 J Pure Appl Math Vol.9 No.2 2025

Figure 1: arr is the new list created in the PT sort. 41 is in the list of 
index 5 in arr.

Figure 2: The example list L.

Figure 4: arr0 after processing the first element.



Analysis

The results show in Figures 9 and 10.

Figure 9: Algorithm: Pseudocode

Flowchart: PT sort

RESULTS AND DISCUSSION

In the first section of this part, PT sort compares to another sorting 
algorithm which appears in the Introduction. The following section shows 
the performance of PT sort. The performance of PT sort. Graph comparing 
is an effective way to compare algorithms. However, there are certain 
drawbacks associated with the use of it. The main disadvantage is that the 
result depending on the code and other factors. The graph of the sort 
algorithm is for reference only. The time and space complexity of PT sort is 
proposing.

Compare to other algorithms

Merge sort: Merge sort has a great representative of the divide and conquer 
algorithm which is also applied on PT sort. That is why we compare merge 
sort with PT sort through merge sort is the only comparison sort 
that appears in this paper. PT sort and Merge sort both use recursion to 
traverse the lists.

Pigeonhole sort: Pigeonhole sort and PT sort are both non comparison sort. 
Pigeonhole sort use support array so does PT sort. Pigeonhole sort does not 
change the same value’s order, which means it is a stable sort technique. PT 
sort is also stable. Both sorting algorithms go linear time complexity when 
only the size of the list change.

Bucket sort: Bucket sort and PT sort is similar but also different. Bucket 
sort use “buckets”, and PT sort has support arrays. However, the range 
of the buckets are the same, but the range of support arrays depending on 
its index. Bucket sort, same as PT sort and other sorts, goes linear 
time complexity when only the size of the list change.

PT sort: A non-comparison sort using the sum of the power of two

J Pure Appl Math Vol.9 No.2 2025 3

Figure 10: Flowchart of PT sort using python style.



Figure 11: Time cost (second) of PT sort by n when r=1000. We can see 
the time cost of PT sort is linear when r is fixed.

Figure 12: Time cost (second) of PT sort by r when n=10000. We can 
see the time cost of PT sort is linear when n is fixed.

Figure 13: Time cost (second) of sort algorithms by n when r=1000. 
From this figure, we can see PT Sort is faster than bucket. Sort and radix 
sort when r=1000.

Time and space complexity

After comparing it to these famous sorting techniques; for example, bubble 
sort, selection sort, etc. The result shows that PT sort is more efficient than 
selection sort and bubble sort, and faster than merge sort when the range of 
list is under 1000 and size is bigger than 100000. The rate of change of time 
cost by the size of PT sort is much smaller than merge sort. The main 
disadvantage of PT sort is that the time cost increases significantly based on 
the range of numbers in the list.

The time complexity of PT sort is 0(n· log2 r)for best, average, 
and worst. The worst space complexity of PT sort is the same as 
time complexity which is 0(n. log2 r). PT sort is a stable sort 
because the order of the same value element does not change 
(Table 1).

Table 1: Simply compare the time complexity, space complexity and stability
of these sorts.

Algorithm Average time 
complexity

Space
complexity

Stable

PT Yes

Merge n Yes

Bucket No

Pigeon Yes

Count Yes

MSD radix 
(in-place)

2 No

CONCLUSION

In this paper, I have proposed a non-comparison sort, PT sort. PT sort is an
integer sorting algorithm. Its average time complexity is 0(n∙ log2 r), so does
its space complexity. PT sort is stable. Its core idea is subtracting the element 
by the power of two. The experiment result shows that Pt sort is efficient 
when the range r is small. It can beat merge sort if the list size is big enough. 
There are two biggest disadvantages of PT sort. First, the time cost can 
increase significantly when r and n are both enormous. Second, PT sort 
cannot sort negative numbers. One way to fix it is to separate negative and 
positive numbers, using absolute value, and then reverse the list that 
contains negative numbers. The future of the PT algorithm is unknown, 
but it is worth to be explored.

Liu YC

Counting sort: The main similarity between counting sort and PT sort is 
when the largest value of the sort increase, time cost also increases. 
Counting sort is an integer sort, so does PT sort.

Radix sort: The word “radix” has a huge connection for PT sort. 
Nevertheless, the principle between radix sort and PT sort is quite different. 
When the range of the list increase, digits also rise. Radix Sort is efficient 
with a large value key because the time cost decreases when the digit 
increases when PT sort has the opposite effect.

Performance

This section displays the line graph which shows PT sort and other sorts’ 
performance base on n, the list size, and r, the range of the list (Figure 
11-14).

4 J Pure Appl Math Vol.9 No.2 2025

Figure 14: Time cost (second) of PT sort and merge sort by n when 
r=1000. We can see PT sort is faster than merge sort when n is bigger 
than 100000.

𝑛 ∙ log2 𝑟 

𝑛 ∙ log2 𝑛 

𝑛 + 𝑟 

2𝑛 + 2𝑘 

𝑛 + 𝑟 

𝑛 ∙ 𝑘 

𝑛 ∙ log2 𝑟 

𝑛 + 𝑟 

𝑛 + 𝑟 

2𝑘 



REFERENCES

Thomas H, Cormen Charles E, Leiserson Ronald L, et al. Introduction 
to Algorithms. 2nd Edition. MIT Press and McGraw-Hill; United States; 
2001.

Donald   E   Knuth.  Section   5.2.4:  Sorting  by  Merging.  Sorting  and 
Searching. The Art of Computer Programming. 2nd edition. Addison- 
Wesley; 1998.

Merge sort. Wikipedia contributors; 2023.

Black  PE. "pigeonhole  sort",   in  Dictionary  of  Algorithms   and  Data 
Structures, Paul E. Black, ed. 21 April 2022. 

Pigeonhole sort. Wikipedia contributors; 2022.

Bucket sort. Wikipedia contributors; 2023.

J Pure Appl Math Vol.9 No.2 2025 (MRPFT) 5

PT sort: A non-comparison sort using the sum of the power of two

1.

2.

3.

4.

5.

6.

7.

8.

9.

Edmonds Jeff. "5.2 Counting Sort (a Stable Sort)". How to Think 
about Algorithms. Cambridge University Press; United Kingdom; 
2008.
Sedgewick, Robert. "6.10 Key-Indexed Counting". Algorithms in Java, 
parts1-4. Fundamentals, Data Structures, Sorting, and Searching. 3rd 
edition. Addison-Wesley; 2003.
Radix sort. Wikipedia contributors. 2023.

https://www.haio.ir/app/uploads/2022/01/The-Art-of-Computer-Programming-Volume-3-Sorting-and-Searching-by-Donald-E.-Knuth-z-lib.org_.pdf
https://en.wikipedia.org/wiki/Merge_sort
https://xlinux.nist.gov/dads/HTML/pigeonholeSort.html
https://xlinux.nist.gov/dads/HTML/pigeonholeSort.html
https://en.wikipedia.org/wiki/Pigeonhole_sort
https://en.wikipedia.org/wiki/Bucket_sort
https://www.cambridge.org/core/books/how-to-think-about-algorithms/FF0333BE61616311143656D41D72636E
http://estigia.fi-b.unam.mx/maestria/cormen.pdf
http://estigia.fi-b.unam.mx/maestria/cormen.pdf
https://www.cambridge.org/core/books/how-to-think-about-algorithms/FF0333BE61616311143656D41D72636E
https://en.wikipedia.org/wiki/Radix_sort
https://dokumen.pub/algorithms-in-java-third-edition-parts-1-4-3rd-edition-0201361205-9780201361209.html
https://dokumen.pub/algorithms-in-java-third-edition-parts-1-4-3rd-edition-0201361205-9780201361209.html
https://www.cambridge.org/core/books/how-to-think-about-algorithms/FF0333BE61616311143656D41D72636E
https://www.cambridge.org/core/books/how-to-think-about-algorithms/FF0333BE61616311143656D41D72636E

	Contents
	PT sort: A non-comparison sort using the sum of the power of two
	ABSTRACT
	INTRODUCTION
	Review of some existing non-comparison sort algorithm and merge sort

	MATERIALS AND METHODS
	Basic Idea
	Algorithm
	Analysis
	Flowchart: Ptsort

	RESULTS AND DISCUSSION
	Compare to other algorithms
	Performance
	Time and space complexity

	CONCLUSION
	REFERENCES




