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Quantum cloud theory: Collapse expectations of matter 
proportions

OG Shvydkyi

- when solving spatial problems, we can use all the powerful potential of the
plane theory of functions of a complex variable.

So the spatial complex number is given by formula (1) where x, y, z are 
the real numbers.

The exponential form of the spatial complex number is:

( ) , (5)iL re ϕ θ+=      (5)

1 1 tan ; sin . (5 )y zWhere a
x r

ϕ θ− −= =               (5a)

The trigonometric form is as follows:

(cos cos  ). (6)L r icos sin fsinθ ϕ θ ϕ θ= + +       (6)

We define the conjugate spatial complex number as follows:

( )*   *  , (7)iL x i rey f z ϕ θ− += − − =      (7)

* ,iWhere f ie henceϕ−=
* 1. (8)f f× = −     (8)

Identical to plane theory, the following relation holds:
2 2 2 2L L*   r   x   y   z (9)× = = + + (9)

Meanwhile the following relationships hold:

2 1( );i as usually= −

INTRODUCTION 

Determination of a spatial complex number

Similar to how a vector is defined in three-dimensional space, we define a 
spatial complex number as follows:

L = ReL + iImL + fFantL = x + iy + fz. (1)

Where ReL – is a real part of a spatial complex number L, ImL - its 
imaginary part, FantL - its spatial part.

The spatial complex number L is shown in Figure1.

The components of the space vector expressed in terms of its magnitude 
r as well as the angles φ and θ are defined as follows:

x = rcosθcosφ,	 	 (2)

y = rcosθsinφ,

z = rsinθ.

On the other hand, the following obvious equality holds:

( )   cos cos  . (3)i i i ie e e icos sin ie sinϕ θ ϕ θ ϕθ ϕ θ ϕ θ+ = = + +      (3)

Now, if we introduce the operator

2 2 2 2L L*   r   x   y   z× = = + +  (4)

Then on the right in formula (3) we obtain the expansion of the space 
vector with unit modulus along the x, y, z axes. The components of this 
expansion coincide with the values of the projections in formula (2) at r = 1.

Thus, the simple rotation in the ordinary complex plane xy of the unit 
vector with the argument φ by the angle θ corresponds to the appearance 
of a spatial complex number (having a spatial coordinate z). We rotate not 
in the plane xy but in the plane perpendicular to it (that is not prohibited). 
Therefore, the angle θ is the angle between the direction of the space vector 
and its projection onto the xy plane (Figure 1). So the true nature of this 
spatial theory of complex functions still remains plane but the results 
obtained on the plane in a certain way can be transferred into space. The 
spatial axis z, as it were, folds into the xy plane with a hinge at the origin and 
rotates about the angle φ by 90 degrees counterclockwise. The fact that the 
spatial theory of complex numbers remains essentially plane has a huge plus 

can obtain the solution of physical problems directly in space. The creation 
of such a theory is associated with some serious problems, for example, the 
appearance of so-called zero divisors, spatial complex numbers that are not 
equal to zero but when multiplying for some reason give zero. There is also 
a Frobenius theorem which prohibits the propagation of complex numbers 
into a space without abandoning some ordinary algebraic operations (for 
example, commutative multiplication). In this article an attempt is made to 
construct a theory of spatial complex functions (shortly, tunnel mathematics) 
in which zero divisors do not appear and all the usual algebraic operations 
are preserved. The possibility of applying this theory to some problems of the 
theory of elasticity and hydrodynamics (the steady Lamé and Navier-Stokes 
equations) is also considered.
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Figure 1) Spatial complex number L.
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ABSTRACT
The theory of functions of a complex variable is a hybrid of vector 
algebra and ordinary algebra. It makes it possible to work with vector 
quantities as with algebraic ones. The modern theory of functions of a 
complex variable was created by the French mathematician Augustin 
Cauchy (1789-1857), later it was rapidly developed and found its 
application in solving various problems of physics in aerodynamics, 
hydrodynamics, elasticity theory, etc. However, this theory is used 
exclusively for solving problems on the plane. Therefore, the next natural 
step is to extend this theory into space, so that we 
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Considering that
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We can define spatial complex number on a plane as follows:

2 2 2 2
. (19)zy zxL x i y

x y x y
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 + + 

                (19)

The derivative in the direction l of an arbitrary function of the spatial 
complex variable P defined by the angles φ and θ is calculated by the formula: 

( ) (20) ,iP P e
l L

ϕ θ+∂ ∂
=

∂ ∂
          (20)

Where L is defined by the formula (1).

The derivatives in the directions of the x, iy, fz axes are equal to each 
other and are calculated as in the usual plane theory. So, for example, the 
derivative of a quadratic function of a spatial complex variable is:

2 2 2 2  2 .L L L L L
L x iy fz
∂ ∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂

New Cauchy-Riemann conditions

Let us derive conditions similar to the Cauchy-Riemann conditions in 
the plane theory which are necessary for the spatial function to be analytic. 
These conditions (let’s call them the New Cauchy-Riemann conditions) as in 
the plane theory are derived from the requirement that the derivatives of the 
function of the spatial complex variable in the directions x, iy, fz are equal 
to each other.

Consider the following spatial complex variable function:

P(L) = u(x, y, z) + iv(x, y, z) + fw(x, y, z),               (21)

Where functions u, v, w are, generally speaking, complex functions of 
real variables x, y, z.

In order for the derivatives of the function P(L) in the directions x, iy, fz 
to be equal to each other the following relations must hold:
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It follows from condition (24) that the derivatives of the complex 
function w in the directions x and iy are equal, therefore the function w is an 
analytic function of the variables x and y and, therefore, a harmonic function 
on the xy plane. This means that the relation holds:
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It turns out that the function P(L) has a “harmonic tail”.

Axis z can be called a combine coordinate axis or overaxis. This situation 
arises because the complex space is built by the intersection of two usual 
mutually perpendicular complex planes, as shown in Figure 2.

Formula (3) based on such model.

The analysis of relations (22) and (23) leads to the next formula for 
complete Laplacian of functions u и v:
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Where function 2f is defined by relation (13), and 
2 2 2

2 2 2x y z
∂ ∂ ∂

∆= + +
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- the Laplace operator.

The analysis of relations (22) - (24) and (13) leads to the next equations 
for the function P(L) from formula (21):
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The relations (24) with condition 0w
z
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 leads to the next equation:
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Application of the obtained results in the theory of elasticity

The obtained properties of the triplet of functions u, v, w can be 
immediately applied to the solution of some applied equations, for example, 
the Lamé (or Navier) equations in the theory of elasticity. As we know, the 
steady Lamé equations are as follows [1]:
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We assume that a triplet of functions u, v, w, which satisfy the New 
Cauchy-Riemann conditions (22) - (24) and the relations (25) - (30), are 
displacements along the x, y, z axes respectively for elastic deformation of 
an isotropic body. In this case naturally the functions u, v, w are measured 
in meters, i. e.

[u] = [v] = [w] = m.

In equations (31)-(33) the coefficients λ and µ are elastic constants
characterizing the material (moreover, µ is the shear modulus). These 
constants are related to Young’s modulus E and Poisson’s ratio σ as follows:

Figure 2) Formation of a complex space by the intersection of two mutually perpendicular 
ordinary complex planes (axis fz is the overaxis).
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is the relative volumetric expansion of the deformed body.
The quantities X, Y, Z are the projections of external volumetric 

forces applied to the deformable body on the x, y, z axes respectively. The 
dimensions of these quantities are as follows:
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During elastic deformation relative displacements are introduced as 
follows:
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In this case the first subscript near the letter e denotes the axis along 
which the deformation occurs; the second subscript indicates which axis is 
perpendicular to the area on which the deformation occurs. The last three 
formulas define shear displacements.

Since the derivatives of the functions u, v, w enter in relations (22) - 
(24) in a linear manner the relative displacements (35) satisfy (what can be
verified by direct substitution) to six Saint-Venant compatibility conditions
which as is known are written as [1]:
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After applying relations (22) - (30) the Lamé equations (31) - (33) take 
the following form:
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The system of equations (36) can be significantly simplified if the second 

equation is multiplied by ⅈ and added to the first equation:
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As we see from equation (37) the projections of the external volumetric 
forces X, Y, and Z are completely determined by the harmonic tail of the 
function P(L), i.e. by the function w which corresponds to the displacement 
of the deformed body along the z axis. If this function is set in advance (as 
we know the harmonic function can represent exclusively the potential and 
solenoidal (without sources and sinks) field of relative displacements) as well 
as at least one of the projections of external volumetric forces (for example 
Z) then the other three unknown functions can be found. The strain tensor
components are calculated using the following formulas [1]:
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Some integral relations of tunnel mathematics

It`s known that in a plane theory of functions of a complex variable it 
is always possible to find the value of the analytic function inside a region 
knowing its values at the boundary of this region. For this aim the Cauchy 
integral formula is applied:
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2 l

f z dzf z
i z zπ
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∮
Here f(z) simply denotes a function of a complex variable in the plane.

A similar formula, in which integration is performed over a sphere S of 
radius R, works for spatial analytical functions:
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Where sphere area element is defined as follows:
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That corresponds to the surface element ndS
 in mathematical analysis.

Figure 3 explains formulas (39) and (40).

It is of interest to find the flux of a function of the spatial complex 
variable P(L) through the sphere S and determine the conditions under 
which it is equal to zero (i. e., determine the conditions under which the 
source or sink of vector field goes out the boundaries of the sphere S). So 
consider the integral
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form:
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Performing the calculations, we conclude the integral in formula (41):
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Where f* is defined by formula (11) and L is defined by formula (1).

We see from formula (43) that if the function w is equal to a constant 
then the flux of the function of the spatial complex variable P(L) through the 
sphere S is equal to zero only in the trivial case.

Figure 3) To the derivation of integral relations in complex space.
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Application of the obtained results in hydrodynamics

Using relations (22) - (27) it is possible to integrate the steady Navier-Stokes 
equation for an incompressible fluid when its particles are isentropically 
moving in circular orbits. This model corresponds to a fluid that moves 
between two coaxial cylinders rotating around its axis [2]. The components 
of the vector velocity field V of the liquid particles are set as follows: Vx = u; 
Vy = v; Vz = w. As is known the condition of incompressibility (solenoidality) 
of a liquid is expressed by the equality to zero of the divergence of its vector 

velocity field, i.e., 0.u v wdiv
x y z
∂ ∂ ∂

∇γ = = + + =
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V V
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way:
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Then relation (24) takes the form:

. (45)w w vi i
x y z

∂ ∂ ∂
= − = −

∂ ∂ ∂
As you know, the vorticity of the vector velocity field is defined as follows:

2 2 2 2 2 2 2 2

4 4 (46)

i j k
w v u w v ucurlV i j k

x y z y z z x x y
u v w

w y v w w iy w wj k j k
x z x xx y x y x y x y

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ = = − + − + − =    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

   ∂ ∂ ∂ ∂   = − − + =− − +
   ∂ ∂ ∂ ∂+ + + +   

 

  

  

That is the vorticity of the velocity field of liquid particles is completely 
determined by the harmonic tail of the function of the spatial complex 
variable P(L), i.e., by the function w in equation (21). Since the function w 
is harmonic in the xy plane and determines the projections of the particle 
velocities on the z axis it can describe exclusively the irrotational (potential) 
and solenoidal (without sources and sinks) field of spatial accelerations of 
liquid particles out of the xy plane. As a first approximation we require that 
the vorticity of the vector velocity field defined by expression (46) has no 
projection onto the y-axis. Thus, we arrive at the following relations:

2 2

0. (47)

, (48)

w w v
x y z

wcurlV k
x y

∂ ∂ ∂
= = =

∂ ∂ ∂

= −
+



Where the function w is equal to a constant. If this constant is zero, the 
vorticity disappears. Of course, in this case the vortex motion of the fluid 
occurs only in the xy plane. 

To find the steady Navier-Stokes equation we proceed from Newton’s 
second law for bulk of fluid in a frame of reference associated with a rotating 
fluid:

, (49)inert ext visc
dV F F F
dt

ρ = + +


  

Where inertF


- volumetric inertia forces (centrifugal and Coriolis), 
viscF


– volumetric external forces, viscF


– volumetric viscous forces (forces of internal friction) which determine
the irreversible, “viscous”, momentum transfer in a fluid [2].

Expressing the volumetric external forces through the gradient of 
pressure Р, and the volumetric viscous forces - through the Laplacian of the 
velocity field we have:

. (50)inert
dV F P V
dt

ρ µ= −∇ + ∆


  

Taking the curl operation from both sides of equation (50) and grouping 
the terms accordingly we get:

, (51)inert
d curlV curlF
dt

ρ µ − ∆ = 
 



Hence it follows that the vorticity of the fluid is provided by the vortex 

field of volumetric inertia forces inertF


. (more precisely, Coriolis forces since 

centrifugal forces can be expressed through the gradient of the scalar field).

Expanding in (50) the total time derivative of the fluid velocity field we 
obtain the well-known Navier-Stokes equation:

. (52)inert
V V V Vu v w F P V
t x y z

ρ µ
 ∂ ∂ ∂ ∂

+ + + = −∇ + ∆ ∂ ∂ ∂ ∂ 

   
  

Assuming the partial time derivative V
t

∂
∂


 equal to zero we obtain the 

steady Navier-Stokes equation in projections:

; (53)

; (54)

; (56)

x

y

z

u u u Pu v w F u
x y z x

v v v Pu v w F v
x y z y

w w w Pu v w g w
x y z z

ρ µ

ρ µ

ρ ρ µ

 ∂ ∂ ∂ ∂
+ + = − + ∆ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
+ + = − + ∆ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
+ + = − + ∆ ∂ ∂ ∂ ∂ 

Where Fx, Fy – the projections of the volumetric inertial forces acting 
in the ху plane;

zg g=  is the projection of the gravitational acceleration onto the axis z 

which is directed downward;

P – fluid pressure;

µ - now is the coefficient of dynamic viscosity;

ρ - fluid density.

Applying relations (47) to equation (55) we immediately find an 
expression for that part of the pressure in the liquid which is determined by 
the increment of the coordinate z:

( ), ( 6) , 5zP gz C x yρ= +
Where С (х, у) – the constant of integration. Thus, Pz is the usual static 

pressure of the fluid in the gravity field.

We assume that the field of volumetric Coriolis forces corF


 completely
belongs to the xy plane. Using the apparatus of tunnel mathematics, we can 
easily obtain an expression for the curl of this field.

We multiply equation (54) by ⅈ, equation (55) by f, after which we add 
up equations (53), (54) and (55) term-by-term. Applying relations (22), (23), 
(29) and (30) we obtain:

2

2 22 2
, (57)inert

ifw fwF P
x yx y
µρ = −∇ +
++

Where inertF and ∇P are spatial complex functions of volumetric forces
of inertia and external forces of the function type (21).

Taking the curl operation from both sides of equation (57) we get:

2
2 22 2

 . (58)cor
f fiw curl curlF wcurl

x yx y
ρ µ= +

++

Taking into account the value of the operator f from formula (18) we 
find the vorticities of the quantities in (58) as the curls of ordinary vector 
fields. After performing the calculations, we get:

2 2

32 2
2 2 2

0. (59)

1 . (60)
( )

fcurl
x y

fcurl k
x y x y

=
+

= −
+

+



Substituting the values (59) and (60) in (58) we find the expression for 
the vorticity of the field of volumetric Coriolis forces:

3
2 2 2

. (61)
( )

cor
wcurlF k

x y

µ
=

+

 

It follows from expression (61) that the curl of the field of volumetric 
Coriolis forces depends on the dynamic viscosity of the liquid and does 
not depend on its density; it also rapidly decreases to zero with increasing 
radius of the trajectory of liquid particles 3(~ ).r−  (In this section the letter
r denotes the radius of the particle trajectory in the ху plane.) 

By integrating relations (22) and (23) subject to conditions (44) and (47) 
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we can find the projections of the velocity field of the liquid V on the axis 
х и у:

12 2

22 2

; (62

, (63)

)wyu C
x y

wxv C
x y

= +
+

= − +
+

Where С1, С2 are integration constants, which are set equal to zero.

It is easy to see that the projections of the velocity field u and v from 
expressions (62) and (63) correspond to circular trajectories of liquid 
particles in the xy plane which move clockwise (that corresponds to the sign 
of the curl of the velocity field in formula (48)) with constant circular velocity 
equal to w. It is easy to check by direct calculation that the value of the curl of 
a given velocity field also corresponds to formula (48). Such field can belong 
to liquid particles that move between two coaxial cylinders rotating around 
their axis [2] provided that the distance between the cylinder walls is small 
enough 

2 1 1(      ).R R h R− = =

A simple formula follows from the expressions (62) and (63):

2 2 2. (64)u v w+ =

We solve the steady Navier-Stokes equations (53) and (54) in an immobile 
frame of reference, i.e., without taking into account the forces of inertia 
Fx and Fy (solutions in a moving frame of reference can be easy obtained 
according to well-known rules). Applying relations (22) - (27), (44), (47) to 
them as well as the newly obtained relations (62) and (63) we obtain the 
following equations for determining the pressure in a liquid:

2

32 2
2 2 2

2

32 2
2 2 2

. (65)
( )

. (66)
( )

P w x wy
x x y x y
P w y wx
y x y x y

ρ µ

ρ µ

∂
= −

∂ +
+

∂
= +

∂ +
+

If we add to equation (65) the expression *

3 2 2
2 2 2

2 ( )

( )

wy w f f
x yx y

µ µ −
=

+
+

 tending to zero with growing distance from the z axis (equality corresponds 
to the formula (12)) then the pressure P can be expressed analytically:

2 2 2

32
2 21 2

( )log , (67)
2 ( )

w x y wxyP gz C
R x y

ρ µ ρ+
= + + +

+
It was taken into account when integrating that if the distance between 

the walls of the cylinders is small enough then the value 
3

2 2 2( )x y+ remains 
practically constant.

Figure 4 shows a graph of water pressure between rotating coaxial 
cylinders that corresponds to formula (67) when the constant C and the z 
coordinate are equal to zero and the value of the circular velocity w is 1 m/s. 
The radius of the smaller cylinder R1 is taken as 0.5 m. The water pressure 
in the direction of the larger cylinder increases along the generatrix of the 
funnel in the figure. The presence of the second term on the right side of 

formula (67) practically does not affect the graph due to the smallness of the 
dynamic viscosity coefficient of water (µ = 0.001 Pa×s) in comparison with its 
density (ρ = 1000 kg/m3).

Since formula (67) is used to calculate the fluid pressure between 
rotating coaxial cylinders provided that the distance between the cylinder 
walls is small enough 

2 1 1(      ).R R h R− = =

this formula can be used to calculate the fluid pressure for the same model 
when the distance between the walls of the cylinders becomes a finite value. 
To do this we need to know how the circular velocity w which was assumed 
to be constant in formula (67) depends on the coordinates on the plane. For 
a model of two rotating coaxial cylinders the circular velocity w depends on 
the polar coordinates as follows [2]:

, (68)bw ar
r

= +

Where a and b are the constants.

Taking the differential from expression (67) and considering all quantities 
to be constant, except for w, and omitting the second term depending on the 
polar angle φ, and also taking the differential from expression (68) we get:

2 2
2

3 2
1

log . (69)b rdP a r dr
r R

ρ
 

= − 
 

After integrating of expression (69) by parts we obtain a formula for the 
fluid pressure between rotating coaxial cylinders when the distance between 
the cylinder walls becomes a finite value:

2 2
2 2

2 2
1 1

[( )  (log 1) ( ) (log 1)] . (70)
2

r b rP ar gz C
R r R

ρ ρ= − + + + +

Figure 5 shows a graph of water pressure between rotating coaxial 
cylinders corresponding to formula (70) when the constant C and coordinate 
z are equal to zero and the constants a and b are equal to unity. The radius 
of the smaller cylinder R1 is taken as 0.5 m. The value of R1 must be outside 
the area of a sharp pressure dropping.

CONCLUSION

In this article the conditions for the analyticity of the spatial function of a 
complex variable (essential relations of tunnel mathematics) were obtained 
and used for solving some steady equations of the theory of elasticity and 
hydrodynamics.

DATA AVAILABILITY

The data that supports the findings of this study are available within the 
article.

DECLARATION OF INTERESTS 

The authors report no conflict of interest.

REFERENCE

1. Muskhelishvili NI. Some Basic Problems on the Mathematical Theory
of Elasticity: Fundamental Equations. Plane Theory Elast Torsion Bend. 
1975;1963:347.

2. Landau LD, Lifshitz EM. Fluid mechanics. Course Theor Phys. 1987;6.
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