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ABSTRACT 
Deep generative models and Artificial Intelligence (AI) have 

recently made strides that have demonstrated their value in the 

medical field, particularly in the drug discovery and development 

process. The developer and user must decide which protocols to 

take into account, which elements to carefully examine, and how 

deep generative models may combine the necessary disciplines in 

order to properly deploy AI. This study provides an updated and 

user-friendly reference for the large computational drug 

discovery and development community by summarizing 

traditional and recently emerging AI methodologies. From various 

angles, we introduce deep generative models and discuss the 

theoretical underpinnings of describing chemical and biological 

structures as well as their practical applications. We go over the 

data issues and technical difficulties and highlight the 

multimodal deep generative models potential for speeding up drug 

discovery. 

INTRODUCTION  

A ccording to a recent report, pharmaceutical corporations spent
$2.6 billion in 2015—an increase from $802 million in 2003—

on the development of new, US Food and Drug Administration-
approved medications. Although there are higher direct expenditures 
associated with clinical trials, the capitalized costs of the two stages 
are essentially comparable because the preclinical investment occurs 
earlier. The requirements and urgencies are captured by recent 
developments in computational sciences and technology, which also 
offer a number of potentially fruitful strategies. Developers can 
choose the best Artificial Intelligence (AI) among these to tackle the 
issue at hand, particularly deep generative models, suitable protocol, 
and factors. Together, they illustrate pathways that unite 
pharmacology, computer science, biology, chemistry, and strategies 
for treating diseases. AI for drug development has made significant 
strides thanks to the quick increase in processing power, data volume, 
and sophisticated algorithms, particularly in the use of deep 
generative models. The models have shown great promise in 
transforming small-molecule and macromolecule design, 
optimization, and synthesis. Deep generative model applications have 

already produced new partially optimized candidate leads, sometimes 
in a fraction of the time needed by traditional sequential procedures. 
Deep generative modeling has the potential to speed up the Research 
and Development (R&D) process if used widely. With the use of data 
structures like graphs and fingerprints as well as actions like the flow 
of functional or experimental information, deep generative models 
can theoretically produce unique chemical and biological structures 
with the desired features. Deep generative models that are 
imaginative can greatly advance algorithm development and use in 
drug discovery. Deep generative models would present cutting-edge 
technologies that could revolutionize an informatics understanding of 
biology, illness, and therapies in this "big data" era. It takes a lot of 
work to create a novel medicine that meets all the requirements for 
on-target potency, selectivity in relation to off-targets, physical 
qualities, and other chemistry and biology parameters. Chemists must 
choose and experimentally validate candidate compounds from a 
broad chemical space using the conventional procedures, which are 
unsuccessful. Deep generative models have gained popularity because 
they can quickly and cheaply produce new bioactive and synthesizable 
compounds. Several widely used chemical and bioinformatics 
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databases that give the drug development community access to 
labeled and unlabeled data for training, validating, and testing deep 
generative models. The internal proprietary libraries of 
pharmaceutical corporations range from 2 to 3 million chemicals and 
include data from prior attempts at medication discovery. For in 
silico screening, the ZINC database gathered roughly 2 billion 
buyable, readily available "drug-like" chemicals from the public 
domain. Due to its enormous scale, it is also effective for pre-training 
generative models by teaching molecular patterns. It is particularly 
interesting to study bioactive molecules, such as those in the manually 
curated ChEMBL database, which contains about 1.5 million actual 
bioactive chemicals, each of which has at least one experimental 
bioactivity measurement. They may be employed to train models to 
produce molecules with particular characteristics. The majority of 
organic compounds (166.4 billion) with up to 17 heavy atoms of C, 
N, O, S, and halogens are listed in the GDB-17 database. This covers 
a lot of the smaller, common lead compounds as well as medications 
with lower molecular weight. Chemoinformatics techniques and 
expert-system-style rules have been used to identify billions of 
synthesizable molecules in extremely large chemical databases like 
Enamine and REALdb. The option to train models with broader 
applicability is provided by these extremely big databases. A number 
of macromolecular databases, including the PDB, provide richer data 
for generative model training in macromolecule design in addition to 
small-molecule resources. In order to process human language, 
generative neural networks must include Recurrent Neural Networks 
(RNNs). They have proved effective in automating NLP computer 
code production and musical composition, and they are valuable 

for modeling systems that have a sequential or temporal component. 
Human language and the language of molecules, like SMILES, are 
similar. Thus, using RNNs to generate molecules based on sequential 
representation is natural. The two networks that make up an 
Autoencoder (AE) are the encoder, which is taught to map input data 
into a low-dimensional latent vector, and the decoder, which is trained 
to map the latent vector back into the input data. The original AE copies 
the input to produce a latent space. Variational AE (VAE) regularizes the 
latent space by substituting latent space distributions for latent space 
points in order to prevent overfitting and discontinuities in the original 
AE. In a ground-breaking study, VAE was used to generate molecules, 
launching a brand-new approach to de novo drug discovery. A molecule 
is represented as an explicit probability distribution over latent space 
because the latent vectors are forced to follow a probability distribution 
(often Gaussian distribution). When the encoder and decoder are 
trained together, the output must recreate the probability distribution of 
the training samples. The basic objective of learning disentangled 
representations for VAE, which aim to make each latent variable of the 
latent vector encode an independent attribute or aspect of data, has 
recently attracted significant attention. If disentangled VAE is effectively 
introduced for molecular generation, a molecular property can be 
changed by altering the latent variables related to that property without 
altering other qualities. 


