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Systolic heart failure with reduced ejection fraction has long been regarded 
as a heart with an irreversible depression in myocardial contractility.  
Improvements in ventricular function with recovery of contractility, how-
ever, have occurred during a period of cardiac unloading provided by a 
continuous-flow left ventricular assist device. The authors briefly review sub-
cellular remodelling involved in the appearance of depressed cardiomyocyte 

work. Redox-sensitive deiodinase 3 (Dio3) is held responsible for a reduc-
tion of intracellular thyroid hormone signalling with the re-expression of a 
fetal gene program that includes slow β-myosin heavy chain. The attendant 
reduction in contractile work is an adaptation that preserves myocyte effi-
ciency (work/energy consumed) and viability. Neutralizing oxidative stress 
and Dio3 is integral to the reversal of subcellular remodelling and rescue of 
depressed contractility.
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Contractility is the property of cardiac muscle that determines 
myocyte shortening independent of muscle length before short-

ening (preload determined) and the load muscle encounters during 
shortening (afterload determined) (1). For the heart, it has been 
divided into intrinsic and manifest components (2): intrinsic contrac-
tility – a function of cardiomyocyte contractile protein composition 
and its handling of calcium as it shuttles between intracellular 
domains; and manifest contractility – determined by substances 
released within the heart (eg, from adrenergic nerve endings or its 
myocytes and nonmyocyte cells) or circulating hormones (eg, cate-
cholamines, angiotensin II) and their cognate receptor binding.

Contractility is often expressed as a global measure of the work 
performed by the myocardium. For example, ejection fraction (EF), 
or stroke volume displaced from a given end-diastolic volume, is a 
frequently used index of contractility. Systolic heart failure is sug-
gested when EF falls below the range established for normal hearts. 
Fallen EF is presumed to imply an irreversibly failing heart – one that 
would not likely recover over time with or without pharmacological 
support. However, the recent experience with continuous-flow left 
ventricular-assist devices (CF-LVAD) suggests otherwise. Following 
a period of device-induced unloading, depressed EF has improved 
and remained stable in some patients to enable device removal (des-
tination therapy) (3-5).

The present mini-review addresses subcellular remodelling and its 
potential for reversal in the rescue of depressed contractility. Dr 
Naranjan S Dhalla (Winnipeg, Manitoba) and coworkers have con-
tributed substantively to our understanding of subcellular remodelling 
and its potential for prevention and recovery (vide infra).

Subcellular Remodelling
Contractility is largely a function of subcellular events occurring 
within cardiomyocytes (6). Studies conducted by Lompre et al (7) and 
reported in 1979 would draw attention to the dynamic shift between 
fast (alpha [α]) and slow (beta [β]) myosin heavy chain (MHC) com-
position when the heart hypertrophied in response to a pressure over-
load or with hypothyroidism, and that was reflected in a reduced speed 
and extent of ventricular shortening. Alpert and Mulieri (8) would 
draw attention to how these responses were, in fact, myothermic adap-
tations (work performed and heat lost/energy consumed). Gustafson et 

al (9) would further identify the important role of intracellular thyroid 
hormone signalling in regulating the ratio of α-MHC/β-MHC.

The studies conducted by Dhalla et al (10) would reveal the plastic 
behaviour of subcellular elements that appear in the hypertrophied 
heart. This included the dynamic nature of the biochemical compos-
ition and molecular structure of myocytes based on changes in cardiac 
gene expression, including shifts between α- and β-MHC isoforms and 
downregulation of sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) 
in response to diverse stressor states. Ventricular function was deter-
mined by events involving these contractile proteins and handling of 
Ca2+ and their potential for preventing or reversing such remodelling 
by pharmacological agents interfering with neurohormonal activation 
(11-17). The term ‘subcellular remodelling’ would be coined to iden-
tify iterations in intracellular responses that followed acute myocardial 
infarction, ischemia/reperfusion injury, chemical-induced diabetes, 
and hypo- or hyperthyroidism. In each of these stressor states, the 
β-MHC response, or slow phenotype, was upregulated along with a 
re-expression of the atrial (ANP) and brain (BNP) family of natriur-
etic peptides, while the fast α-MHC isoform along with SERCA2a 
were downregulated. This myocyte dedifferentiation would recapitu-
late the fetal gene program with a reduction in the speed and extent of 
contractile work. Consequent depressed indexes of contractility would 
suggest the myocardium was failing. However, when viewed in terms of 
myocyte work performed relative to energy consumed, the heart had 
adapted to preserve its efficiency and myocyte viability.

A further cardioprotective adaptation operative during hyper-
adrenergic stressor states is the downregulation of positive inotropic β1 
and β2 adrenergic receptors, while negative inotropic β3 receptors are 
upregulated to offset catecholamine excess (18).

Collectively, these protective myocyte transformations occur based 
on intracellular signalling, which links mitochondrial and nuclear 
responses with cytosolic events to conserve myocyte energetics.

Some have argued the subcellular remodelling that accompanies 
hypertrophy with reduced contractile work is pathological and increases 
the risk for heart failure and, accordingly, suggest hypertrophy should be 
prevented (19-22). The fetal gene program and reduced contractile 
work of the hypertrophied heart is not equipped to accommodate acute 
increments in ventricular pressure work imposed by the placement of a 
constrictive aortic band or infusion of angiotensin II in pressor dosage. 
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The resultant afterload mismatch (23) with reduced shortening and 
ventricular dilation are cited as further evidence of pathological 
hypertrophy.

Myocyte hypertrophy and subcellular remodelling, however, are 
reversible following ventricular unloading such as occurs with the 
replacement of a stenotic aortic valve (24,25) or constrictive aortic 
band (26-28), CF-LVAD support (3-5) or with antihypertensive 
agents (29). Depressed contractility is reversible and, therefore, can 
be rescued.

Deiodinase 3 and Intracellular Thyroid 
Hormone Signalling

Intracellular thyroid hormone (TH) signalling regulates myocyte 
expression of contractile proteins: high TH favours fast α-MHC as 
dominates the normal heart or with hyperthyroidism, while low TH 
promotes slow β-MHC of the hypertrophied heart or in hypothyroid-
ism (8). Circulating thyroxine (T4) is deiodinated into biologically 
active triiodothyronine (T3) by deiodinase (Dio)2. A reduction in 
Dio2 activity, as occurs with the oxidative stress of acute stressor 
states, creates a low circulating T3 systemic state referred to as the ‘sick 
euthyroid syndrome’ (30). Cardiomyocytes, however, have little or no 
Dio2 and, therefore, are spared intracellular T3 formation with its 
potential adverse demand on energy consumption.

Deiodinase (Dio3), a deiodinase that converts both T4 and T3 into 
inactive metabolites, is similarly activated by oxidative stress (31). Dio3 
is present in cardiomyocytes, where it protects these cells from incre-
mental T3 and preserves their efficiency; it is considered metabolic 
adaptation (#1a in Figure 1). Dio3 expression and activity are increased 
in the hypertrophied ventricle associated with pressure overload and 
which follows infarction or induction of diabetes (32-34). Low intra-
cellular T3 regulates the re-expression of the fetal gene program in 
favour of slow β-MHC and downregulated SERCA2a. Low-dose T3 
replacement or forced myocyte expression of Dio2 activity will prevent 
myocyte re-differentiation and decline in contractility (34-36).

Intracellular TH receptor (THR) is physically bound to myocyte 
enhancing factor (Mef)2 (37); their functional interaction activates 
β-MHC expression as adaptation (#1b in Figure 1). Forced expression 
of one of its isoforms (Mef2 a, c or d), together with aortic band-
ing, reduces contractile work and leads to a dilated cardiomyopathy 
(38-40). THR binding is downregulated in the failing heart (41). 
Collectively, reduced T3 and THR binding favour β-MHC re-
expression with reduced contractile work.

During hyperadrenergic stressor states, catecholamine-driven 
Ca2+ entry via L type Ca2+ channels is enhanced leading to cytosolic 
[Ca2+]i and mitochondrial [Ca2+]m overload in cardiomyocytes 
(42,43). The ensuing induction of oxidative stress by these organelles 
leads to myocyte activation of Dio3 to cause low intracellular T3 – a 
cardiac tissue-specific hypothyroid state that favours adaptation #2 in 
Figure 1. Concurrent store-operated Ca2+ channel entry with Ca2+ 
overload and oxidative stress occurs in response to other circulating 
hormones (eg, angiotensin II) and too may be contributory. Dhalla, et 
al (44) suggested intracellular Ca2+ overload and oxidative stress rep-
resent a common pathophysiological scenario operative in diverse 
stressor states.

An additional cardioprotective adaptation during hyperadrenergic 
states is the concordant downregulation of positive inotropic β1 and β2 
adrenergic receptors, which account for the reduction in contractile 
reserve to dobutamine, a β1 agonist (18). Manifest contractility and 
contractile reserve are further reduced by the upregulation of negative 
inotropic β3 receptors presented as adaptation #3 in Figure 1 (45).

Collectively, this subcellular remodelling has the potential to be 
reversed and contractility to be rescued.

Reversing Subcellular Remodelling
The rescue of depressed contractility draws on reversing molecular sig-
nalling and attendant pathophysiological responses. CF-LVAD-induced 
optimal unloading of the failing heart has, as its objective, the reduc-
tion of left ventricular pressure and volume work and, thereby, the 
regression of hypertrophy and chamber dilation (3-5). A proportional 
reduction in ventricular mass and chamber volume must be obtained 
(normal mass/volume ratio 1.3) to avoid increments in systolic wall 
stress with impaired shortening (46). Reverse remodelling at the organ 
level includes a regression of fibrosis with its multiple adverse effects on 
myocardial structure and function (47,48). Reductions in plasma and 
tissue natriuretic peptides – biomarkers of chamber distention and 
myocyte dedifferentiation (49) – also occur. Improvements in contract-
ility and myocardial functional recovery with CF-LVAD support have 
been found in younger patients with nonischemic cardiomyopathy 
(3-5) and patients with a shorter duration of heart failure (50-52). In 
addition, recovery in EF has correlated with morphological findings 
that include smaller myocytes and less fibrosis at the time of device 
implantation (53,54). Prolonged LVAD unloading and/or body 
immobilization with bed rest, on the other hand, must be avoided 
because each favours cardiomyocyte and muscle atrophy, where fetal 
gene re-expression can be expected (55,56). This finding is accentu-
ated by data that found left ventricular function to already have 
improved as early as 30 days with the greatest degree of functional 
recovery within six months of LVAD implantation (4).

A reversal of systemic oxidative stress is essential to recovery and 
rescue of contractility (57,58). This includes its role in the regulation 
of Dio2 and Dio3 deiodinases, with respective low T3 at systemic and 
cardiomyocyte levels. Enhancing endogenous antioxidant defenses 
can be used to attenuate redox stress (59-61). Pharmacological blockade 
of effector hormones of the activated renin-angiotensin-aldosterone 
and adrenergic nervous systems must also be addressed.

Summary
Based on subcellular remodelling and myocyte adaptations, indexes of 
contractility will be reduced in the failing heart. Dedifferentiation of 
hypertrophied myocytes driven by low intracellular T3 signalling with 
re-expression of slow β-MHC coupled to downregulation of α-MHC 

Figure 1) A pathophysiological scenario that overviews a common patho-
physiological stressor state leading to cardiomyocyte intracellular [Ca2+]i 
overload and oxidative stress with subsequent upregulated deiodinase (Dio)3 
activity and resultant subcellular remodelling. This includes low intracellular 
T3 signalling and cell dedifferentiation with recapitulation of the fetal gene 
phenotype. Ensuing adaptations (#1 – #3) accompany fetal gene re-expres-
sion, including β myosin heavy chain (β-MHC) and atrial natriuretic pep-
tide (ANP) coupled to downregulated α MHC and SERCA2a, together 
with β1 and β2 adrenergic and thyroid hormone (TH) receptors (R), while 
β3R are upregulated. Collectively, these adaptations eventuate in depressed 
intrinsic and manifest myocardial contractility with reduced contractile work 
relative to energy expenditure to optimize myocyte efficiency (see text). 
Reproduced with permission from Weber KT. Depressed myocardial con-
tractility. Can it be rescued? Am J Med Sci 2016 (In press)
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and SERCA2a is integral to these adaptations; so too is the concord-
ant downregulation of β1 and β2 adrenergic and TH receptors with 
upregulation of negative inotropic β3 receptors. These adaptations are 
invoked to preserve myocyte efficiency and, thereby, viability. Attendant 
reductions in subcellular remodelling with depressed indexes of myocar-
dial contractility, however, can be rescued by antioxidants and a period 

of ventricular unloading, whose optimal duration will likely need to be 
determined for each patient.
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