Shared medical appointments as a new model for carpal tunnel surgery consultation: A randomized clinical trial

Alison L Wong MD1, Janet Martin BSc2, Michael J Wong MD3, Michael Bezuhly MD MSc1, David Tang MD1

BACKGROUND: In chronic disease management, shared medical appointments have been shown to improve clinic access, productivity and patient education. However, adoption of this model in surgical consultation is limited, and its effect on surgical patients' satisfaction, comfort and surgical risk recall is unknown.

OBJECTIVE: To determine whether shared medical appointments could be applied to carpal tunnel surgery consultation while being equally effective as individual consultation for risk recall, patient comfort and satisfaction.

METHODS: A prospective randomized trial involving 80 patients referred for carpal tunnel release consultation, in which patients were assigned to an educational discussion individually or as part of a shared appointment, was conducted. In a blinded fashion, patients were contacted preoperatively to assess their risk recall and postoperatively to rate their overall satisfaction, comfort and satisfaction with the surgeon.

RESULTS: Patient demographics were equal. Surgical risk recall was equivalent between shared and individual consultations (2.06±1.15 versus 1.64±1.04; P=0.11). More participants in the shared appointments condition remembered the specific risks of infection (61.1% versus 33.3%; P=0.020) and bleeding (30.6% versus 10.3%; P=0.028). There was no difference in overall satisfaction (8.70 versus 8.88; P=0.75), satisfaction with the surgeon (8.05 versus 8.13; P=0.92) or overall comfort (8.80 versus 8.31; P=0.46).

DISCUSSION: Shared medical appointments for carpal tunnel surgery consultation were equivalent to individual consultation in terms of surgical risk recall, patient satisfaction and comfort.

CONCLUSION: These results support the use of shared appointments for large-volume, low-variation surgery.

Key Words: Carpal tunnel; Health care delivery; Health management; Patient education; Risk recall; Shared medical appointment

I nitial consultation and patient education are essential components of a clinic visit; however, they require a significant portion of time from both surgeon and patient. Effective informed consent provides patients with more realistic expectations, increases cooperation and results in higher satisfaction (1-4). In comparison, poor clinician communication and inadequate understanding of possible risks are common reasons for patients to seek legal action (5).

Ideally, the education process allows adequate time for patients to receive ample information, and for their questions to be answered satisfactorily. However a considerable amount of time is required for sufficiently comprehensive informed consent discussions, and generally comes at the expense increased clinic wait times (6). Worse yet, despite education through the traditional consultation model, patients are often unable to recall the specific risks that are discussed with their surgeon (7-9).

Shared medical appointments (SMAs, also known as ‘group visits’ or ‘group consultations’) provide an alternative format to individual consultation for patient education. This model can increase the length of time patients receive education about their procedure, and they are also able to discuss the procedure with others who are undergoing the same surgery. The additional benefit is that the total time to see the same number of patients is reduced compared with multiple individual appointments, which results in improved clinic flow and increased access for patients (10-13). Despite provider concerns of patients' reluctance and potential privacy issues, patients consistently report high levels of satisfaction and willingness to participate in future consultations shared with a group.
METHODS

Study design and patient sample

This was a prospective study of 80 patients with moderate to severe carpal tunnel syndrome confirmed by electrodiagnostic studies referred for open CTR consultation at a single institution by a single surgeon (DT). Figure 1 depicts the patient assignment and timeline. Exclusion criteria were: unconfirmed carpal tunnel syndrome; age <16 years; and inability to provide informed consent (7,25). Of 85 patients screened for eligibility, two did not meet the inclusion criteria (previous open hand surgery) and three declined participation in a research study, but not group consultation.

A statistical power analysis was performed to determine the sample size for noninferiority. Previous studies investigating risk recall suggested a mean recall of 25% to 80% for standard oral informed consent discussions; therefore, a mean recall of four of seven items and a standard deviation of 2.3 with a noninferiority limit of 2 was chosen (2,8,23-27). With alpha 0.05 and power 0.95, the projected sample size for the present study was 34 per study condition (7,25).

The present study was approved by the institutional review boards and is a registered clinical trial (CDHA-RS/2014-244, ClinicalTrials.gov NCT02071238).

Randomization and blinding

When patients were contacted by the clinic administrator, they were screened for inclusion and exclusion criteria. If they met criteria for inclusion, they were randomly assigned to standard individual discussion or to an SMA, using Random.org’s Random Integer Generator (https://www.random.org/). Patients were made aware of their assignment at the time and, if they did not wish to participate, were excluded from the study.

For the present study, all patients had an initial brief one-on-one meeting with the surgeon, during which the diagnosis was discussed. Medical history and demographic data, including sex, age, education and occupation, were collected using a standardized form. Willingness to participate in the study and lack of exclusion criteria were then confirmed. In total, this took approximately 8 min, 5 min for the initial medical discussion and 3 min for the study participation discussion.

Patients randomly assigned to the individual condition stayed in the same clinic room and the surgeon provided details of the potential risks and complications of the operation. A standardized script was used that included seven complications of open CTR, as compiled from review of the literature (22,23,28,29): not getting better; pain at site; bleeding; incision complications; infection; local nerve damage; and complex regional pain syndrome (CRPS). The script used plain language and an effort was also made to place equal emphasis on each potential risk during the discussion. Patients randomly assigned to the SMA had the same initial discussion with the surgeon to discuss the diagnosis and involvement in the study. Once a group of eight to 12 patients had met with the surgeon, they were then moved into a larger conference room and were presented the same script by the surgeon, with an accompanying visual presentation and time to allow for questions. SMAs lasted approximately 35 min to 45 min, compared with 10 min to 20 min for an individual consultation, each in addition to the 5 min for initial discussion. Total surgeon time to conduct a consultation session 10 patients in the SMA condition ranged from 85 min to 95 min ([10 × 5 min] + [35 min to 45 min]), while the time to see 10 patients in the individual condition ranged from 150 min to 250 min ([10 × 5 +10 to 20 min]).

Two weeks following the initial consultation, but before the time of surgery, a blinded member of the research team contacted each patient via telephone. Using a standardized script to minimize bias and avoid hints or cues, the patient was asked to recall the seven specific risks discussed at the initial consultation. In follow-up after surgery, patients were again contacted by a blinded member of the research team and asked to rate their overall satisfaction, comfort with the surgeon and satisfaction with surgery on a 10-point Likert scale.

Analysis

Statistical analysis was performed using R (R Foundation for Statistical Computing, Austria). Mean risk recall, comfort and satisfaction for each group were compared using independent samples t-tests. Recall for individual risks was compared using a two-proportion Z-test. Demographic data were analyzed using an independent t-test for age, a poor English fluency; discussion of additional procedures; previous open (not percutaneous) hand surgery; and inability to provide informed consent (7,25).
Z-test for sex and a Wilcoxon rank sum for education level. Pearson and Spearman correlations were used to correlate risk recall with age and education. Patients who could not be contacted for their initial telephone survey were not included in the analysis.

RESULTS

Demographics

Forty patients were recruited into each arm of the study starting in October 2014, with final follow-up in June 2015, but some were lost to follow-up. A total of 75 patients completed the study, with 39 in the individual consultation condition and 36 in the SMA condition. There was no significant difference in patient demographic data (Table 1).

Risk recall

There was no significant difference between the number of surgical risks recalled between the SMA and individual consult conditions (2.06±1.15 versus 1.64±1.04; P=0.11) (Figure 2). More participants in the SMA condition remembered the specific risks of infection and bleeding (61.1% versus 33.3% [P=0.02]; 30.6% versus 10.3% [P=0.028]). Very few participants in either condition recalled CRPS (5.6% versus 2.6%; P=0.51) (Figure 3). Age did not influence the number of risks recalled (Pearson correlation r=0.074; P=0.527). However, the number of risks recalled was positively correlated with a higher level of education (Spearman rank correlation r=0.236; P=0.042).

Satisfaction

There was no difference between SMA and individual consult conditions in overall satisfaction (8.70±2.03 versus 8.88±1.15; P=0.747), satisfaction with the surgeon (8.05±2.56 versus 8.13±1.86; P=0.920) or overall comfort (8.80±2.02 versus 8.31±1.89; P=0.460).

DISCUSSION

SMAs for CTR consultation were not only noninferior to standard individual consultation, but patients who received their consultation as part of a group recalled certain risks better than their counterparts. This effect was observed without decreasing overall satisfaction, satisfaction with the surgeon or overall comfort.

The present study is concordant with previous findings that patients generally have a poor recall of the risks presented during their initial surgical consultation (2,8,25,26). The specific risks recalled were not uniform, with a larger proportion of patients recalling ‘not getting better’ and ‘infection’, while very few remembered CRPS, a risk with some of the most severe long-term consequences. This trend may reflect that risks are more difficult to remember if they are difficult to conceptualize or are not common knowledge (8,26). Poor risk recall may also be driven by a limited appreciation of the potential severity of the risks because a positive correlation between level of education and number of risks recalled was observed without a significant effect of age (25,26).

While patients in the SMAs did not perform statistically significantly better overall than patients who had their consultation individually, they did have improved recall of infection and bleeding risks. This increase may be due to two differences between the SMA and individual consultation, the first being that the SMA discussions were much longer (35 min to 45 min) than individual discussions (10 min to 20 min). Previous studies have shown that patient education sessions lasting 20 min to 30 min improve overall comprehension and risk recall because it enables patients to process information and prepare for the impact that the surgery may have (2,8). The second difference is that patients receiving SMA consultation received a visual presentation, and audiovisual interventions in the informed consent process have consistently been shown to improve comprehension compared with standard oral discussion (2,5).

The initial sample size calculation overestimated the total number of risks that patients would recall as well as the standard deviation. Given a larger sample size, a more pronounced benefit of SMAs on recall may have been observed.

TABLE 1

Demographic data of participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Individual (n=39)</th>
<th>SMA (n=36)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>56.0</td>
<td>54.9</td>
<td>0.6689</td>
</tr>
<tr>
<td>Range</td>
<td>32–75</td>
<td>32–75</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>0.0628</td>
</tr>
<tr>
<td>Male</td>
<td>19 (48.7)</td>
<td>10 (27.8)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>20 (51.3)</td>
<td>26 (72.2)</td>
<td></td>
</tr>
<tr>
<td>Level of education</td>
<td></td>
<td></td>
<td>0.4827</td>
</tr>
<tr>
<td><High school</td>
<td>7 (17.9)</td>
<td>3 (8.3)</td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>16 (41.0)</td>
<td>11 (30.6)</td>
<td></td>
</tr>
<tr>
<td>College</td>
<td>7 (17.9)</td>
<td>9 (25.0)</td>
<td></td>
</tr>
<tr>
<td>Undergraduate</td>
<td>8 (20.5)</td>
<td>11 (30.6)</td>
<td></td>
</tr>
<tr>
<td>Graduate</td>
<td>1 (2.6)</td>
<td>2 (5.6)</td>
<td></td>
</tr>
</tbody>
</table>

Data presented as n (%) unless otherwise indicated. There were no statistical differences in age, sex or education level. SMA Shared medical appointment.
The high level of comfort and satisfaction of patients who participated in SMAs is encouraging because these factors are correlated with decreased anxiety and improved health outcomes, and demonstrate that communication was perceived as adequate. Strong communication is an important part of the patient-physician relationship because it gives patients more realistic expectations, increases cooperation and may decrease malpractice liability (1-4). When a patient experiences a complication that was undisclosed or even disclosed but not remembered, they may claim malpractice. Any nonstandardized method of disclosing surgical risks may expose the surgeon to litigation, especially because laws regarding informed consent are inconsistent across jurisdictions (5). This risk can be minimized by reducing variability in the informed consent discussion as was done in our study with the use of a standardized script for both individual and group consultations.

In addition to the benefits of improved risk recall and standardization, SMAs provide a means for improving clinic workflow. Clinic efficiency is becoming increasingly important as both the Joint Commission on Accreditation of Healthcare Organization and the National Surgical Quality Improvement Program are grading institutions and providers based on both patient satisfaction and financial efficiency (30). Thorough educational discussion with individual patients can take a significant length of time, having a negative impact on efficiency (2). Physicians must attempt to strike a balance between having brief informed consent discussions, delaying other patients or seeing fewer patients per clinic. The length of time for each consultation in the present study was 5 min for the initial discussion of the condition and an additional 10 min to 20 min for the informed consent process in the individual consultation. amounting to approximately 150 min to 250 min to see 10 patients. To see the same number of patients in an SMA would only take 85 min to 95 min ([10 × 5 min] + [35 min to 45 min]) and each patient would have a longer time with the surgeon. Fifteen minutes is a commonly reported surgical consultation time (6) and, while some surgeons may be able to conduct a faster consultation, shortening consultation time could affect patient understanding, information retention and satisfaction, because overall session length is strongly positively correlated with patient comprehension (6,8,31).

The SMA model may further improve clinic efficiency if sessions are partially led by a nonphysician clinician, such as a nurse or physician assistant, freeing up additional physician time. The economic benefit has been shown in a wide variety of subspecialties that implemented SMAs, showing not only better patient access and productivity, but also the potential for increased revenue (12,20,32,33).

Although SMAs are not a validated survey, the results are consistent with other studies that have shown that SMAs lead to a number of known workflow benefits, including increased patient satisfaction while providing equal or better outcomes in terms of risk recall. More comprehensive surveys may demonstrate differences in understanding beyond simple retention of a list of risks. While patient comfort and satisfaction were noninferior, if not superior, to standard individual consultations, while providing a number of known workflow benefits (10,17,18,37). It was, therefore, not sufficiently powered to detect more subtle but potentially clinically relevant benefits of SMAs. An added limitation is that risk recall does not perfectly equate to understanding and patient comprehension was not formally assessed (4). More comprehensive surveys may demonstrate differences in understanding beyond simple retention of a list of risks. While patient comfort and satisfaction were assessed using a simple Likert scale and not a validated survey, the results are consistent with other studies that have found high patient acceptance and willingness to participate (10,11,17,18,20).

Based on these results, the authors recommend implementing SMAs for large-volume, low-variation, low-urgency surgery. SMAs can improve patient education and clinic flow, with very high patient satisfaction while providing equal or better outcomes in terms of risk recall. Concerns regarding patient confidentiality and HIPAA compliance can be overcome with the appropriate documentation to meet privacy regulations. Integration into existing clinic schedules can be accomplished with basic measures at the time of booking. Moving forward, SMAs and other forms of group education should be regarded as one of the many tools that can be used to help optimize the patient experience in an integrated fashion.

DISCLOSURES: The authors have no financial disclosures or conflicts of interest to declare.
REFERENCES

PulsusEdit™ specializes in high-quality editing of medical research manuscripts and is committed to providing you with industry-leading quality and service.

Visit PulsusEdit.com and submit your manuscript online for a no-obligation quote today!