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METHOD 
 Sigmoid functionization of magnetization in the spin-glass Ising 

model 
Akira Saito 

INTRODUCTION 

he Ising model is the simplest and most fundamental interaction

model. Each spin (node) interacts with each other, taking states of 
either -1 or 1, and evolves continuously at temperature T, eventually 
converging to a state called the ground state at T=0. This ground state 
has the lowest energy in the system, with each state's expected value 
being the order parameter taking -1 or 1. It represents how the system 
settles due to interactions. In complex systems, the resultant states of 
interactions serve as solutions to combinatorial optimization problems 
(NP problems). In the real world, solutions to interaction systems and 
combinatorial optimization problems have wide applications across 
various fields. The spin-glass Ising model is a variant of the Ising model 
where interactions include both positive and negative components 
individually. It can model various interaction systems and 
combinatorial optimization problems. Now, the magnetization of this 
spin-glass Ising model has been represented using a sigmoid function. 
Furthermore, in the ground state, magnetization can be expressed by a 
set of nonlinear simultaneous equations for each magnetization. 
Combinatorial optimization problems (NP problems) and interacting 
systems can be reduced to solving these nonlinear simultaneous 
equations. Below, we present the derivation of these equations. 

RESULTS 
At all temperatures, the following results were obtained. 

   (1) 

   (2) 

Also, at the ground state (T=0), the following results were obtained. 

(3)   

 (4) 

THEORY 
Let there be state variables for each node i = 1 to N, each with the 
following states. 

=ni or0 1  (5) 

The model, represented by the following Hamiltonian of the system, 
is called the Ising model [1]. (Although the Ising model is 
generally characterized by n = -1 or 1, it can be simplified for 
calculations as n = 0 or 1.)      

 (6) 

However, εij can take any value within the specified range (spin-glass 
Ising model) [2]. 
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ABSTRACT 
The magnetization of the spin-glass Ising model can be expressed 
using a sigmoid function. In the ground state, the magnetization is 
determined by solving a set of nonlinear simultaneous equations, 
each corresponding to a magnetization. As the magnetization of the 
ground state in the spin-glass Ising model constitutes an NP-
complete problem, the P=NP problem can be reformulated as 
solving these nonlinear simultaneous equations. If practical 
computation yields result that are feasible, it can be essentially 

considered as P=NP. Furthermore, all interacting systems in nature can 
be represented by sigmoid functions, and the ground state can be 
obtained by solving nonlinear simultaneous equations. 
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 (7)                              

The order parameter <ni> is determined by the following. 

 (8)                                                      

 (9)    

From equations (5), (8) and (9) 

 (10) 

 (11) 

Based on the above, equations (1) and (2) are obtained. Equation (10) 
(equivalent to equation (1)) is a sigmoid function. 

Furthermore, at t=∞, From <n>=0 or 1 

From the above, using the relations in equation (10)'s expansion, 
equations (11) and (12) are obtained. 
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This constitutes a set of nonlinear simultaneous equations for <ni>. In 
other words, the problem of finding the order parameters <ni> of the 
ground state reduces to solving these nonlinear simultaneous 
equations. 

DISCUSSION 
In mathematics, there exists an unresolved problem known as the P vs 
NP problem. This problem, in the field of computer science, raises the 
question of whether if a solution to a problem can be efficiently 
verified, can it also be efficiently found? Here, "efficiently" means that 
the solution can be computed in polynomial time with respect to the 
size of the problem. "Polynomial time" refers to an algorithm that takes 
time proportional to n raised to a constant power (where n is the size 
of the problem). In essence, the P vs NP problem asks whether all 
problems for which solutions can be quickly verified (NP) are also 
problems for which solutions can be quickly found (P). Now, about 
this problem, the ground state of the spin-glass Ising model has been 
reduced to a solution of a set of nonlinear simultaneous equations. 
Since finding the ground state of the spin-glass Ising model is 
equivalent to NP-complete problems, which can be converted to all NP 
problems, if the solution to these nonlinear simultaneous equations 
can be obtained through numerical computation, it can be said that 
P=NP within a practical range. 
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