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INTRODUCTION  
 he topic of Silicon Nanowires (Si-NWs) is a timely emergent 
study. Over the last few years Si-NWs have come under intensive 

research as a result of their potential characteristics and conceivable 
as key materials in advanced optoelectronic applications [1-3]. The 
review work on a fast-developing topic is not a trivial objective, and it 
is even more critical with nanotechnology-related subject matters. 
This review is focused on experimental work and progress of Silicon 
Nanowires (Si-NWs) technology for the past decades, with more focus 
on the last decade work. Si-NWs are particularly important, based on 
the well-known fact of the technological importance of Si material. 
Moreover, the particular advantages of Nano morphology of high 
ratio of the area of the surface to the corresponding volume and their 
related applications [4]. Any application take place at the outer 
surface of the material such as chemical reactions or photon 
absorption, it will obviously speed up at that surface of extremely high 
area [5]. 
Indeed, there are potential features of Si-NWs to be integrated with 

the available applications, such as, Photovoltaic (PV) [6]. The 
transistor of Metal Oxide Semiconductor Field Effect would benefit 
from the advancement of Si-NWs in improving performance, such as 
the Vertical Transport Field Effect Transistor (VTFET). Moreover, 
some lights have been shed on integrating Si-NWs in developing 
Atomic Force Micros-copy (AFM), Raman spectroscopy, and as stands 
alone applications, such as sensors [7]. Simulation studies on the 
possible integration of nanowires to various de-vice fabrication 
techniques is of great interest at this stage. Particularly, in building 
specific device structures and studying the expected I-V performance. 
It has been demonstrated, as an example, using a 3DS quantum 
simulator of Atlas numerical which is built based on non-equilibrium 
green’s function formalism the physical channel contraction upon 
nanowires integration with Field Effect Transistors (FET) [8]. 
The fabrication approaches and progress of growing Si-NWs are based 
mainly on; bottom-up and top-down techniques. 
The direct epitaxial growth of Si-NWs from a cat-lazing    material on 
a substrate is called bottom-up growth technique. 
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ABSTRACT 
This article reviews the growth concept of silicon nanowires with an 

attention to semiconductor nanowires filling the gap in the 

knowledge from the very original work to the very recent innovative 

experimental work. The objectives of this article are as follows; 1- to 

describe the original work of epitaxial growth of semiconductor 

nanowires, 2- to discuss the recently emerged technique of 

nanoscale templating controlling the growth position of nanowires, 

and 3- to explore the possible technological applications of position-

controlled silicon nanowires. Comprehensive description of the first 

reported successful Vapor-Liquid-Solid (VLS) 1-D growth of silicon 

crystals is given. The growth approach of bottom-up and the 

supersaturation in a three-phase system of VLS is presented along with the 

nucleation at the Chemical Vapor Deposition (CVD) processes. Positional 

assembly of silicon nanowires using current available techniques along with 

the recently invented one of Nanoscale Chemical Templating (NCT). 

Several applied and conceptional methods of developing available energy 

applications using nanowires are included, such as, photovoltaic (PV) cells, 

Atomic Force Microscopy (AFM) and Metal Oxide Semiconductor Field 

Effect Transistor (MOSFET) is explained. The finial section of this review 

showed statistical trends in nanowires and Nano rods scientific studies 
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Figure 1) Schematic illustration shows a substrate and the bottom-up process 

where atoms (the building units) are moving towards or deposited on the 
substrate, when atoms are moving away or etched from substrate in the top-
down mechanism 
 
While, photoresist patterning on top of a silicon substrate followed 
by etching to create vertical structures is explained as top-down 
approach (see figure 1) [9-12]. Where the details of top-down Si-NWs 
fabrication approach can be found elsewhere [13,14]. 
The pioneer work in 1965, carried out by Wagner and Ellis, has led 
the current work on Si-NWs. The VLS growth system uses metallic 
droplets or particles (after annealing the sheet layer of metals on the 
Si substrate), as a seed material nucleating the growth of Si-NWs and 
adsorb Si gaseous atoms of SiH4 precursors then precipitate to allow 
crystal growth. The classical example of growing Si-NWs is the VLS 
system where gold (Au) metal act as a catalyst eutectic droplet. A 
recent work by Ramanujan et al has reported the growth and 
properties of Si-NWs [15-18]. It has been reviewed various growth 
methods currently employed in bottom-up Si-NWs growth with 
special attention on Au and non-Au catalysts. Au is the most widely 
used catalyst for Si-NWs growth by CVD under VLS mechanism, as it 
offers a good size control. Indeed, there are other growth mechanisms 
such as vapor–solid–solid (VSS), Solution–liquid–solid (SLS) at the 
Ultra High Vacuum Chemical Vapor Deposition (UHVCVD) 
reactor, or using the advanced Molecular Beam Epitaxy (MBE), or 
laser ablation which have been employed to address issues related to 
control Si-NWs, such as, diameter, aspect ratio, position. Moreover, 
catalyst free oxide- assisted methods have also been utilized to grow Si-
NWs. Precise positioning of nanowires can be achieved by Electron 
Beam Lithography (EBL) [19]. 
Studying the physical properties of the structure of Si-NWs is 
predominantly critical so that a reproducible relationship between 
their required functionality and role with their geometrical 
characteristics can be built. Si-NWs may possess disparate properties 
due to differences in their crystal phase and directions, crystalline 
size, i.e., bulk substrates (3D), and nanowires (1D), or thin film or 
Nano membranes (2D), surface conditions, and aspect ratios.  
Most studies to- date have used Au as a catalyst for Si-NWs due to the 
ease of handling that arises from its high resistance to oxidation. 
Indeed, the interest in other metals to seed the growth of Si-NWs has 
arisen from the fact that Au impurities in Si decreases the carrier 
mobility, lifetime, and diffusion length, as Au act as a deep level trap 
[20]. From the practical point of view, it is desirable to avoid using Au 
as a catalyst of Si-NWs growth [21]. Based on the previous, the gap in 
the knowledge of Si-NWs growth and applications is a comprehensive 
study on Si-NWs catalyzed with elements such as Al which assist the 

growth and alloy for advanced applications. The concept of growing 
semiconductor nanowires is presented in the next session, along with 
selected resembling tabulated information of growth techniques and 
catalysts materials. Where semi-conductor nanowires section leads us 
to a more a specific topic of silicon nanowires and related techniques 
and applications. 
 
Epitaxial Growth of Si-NWs 

 
Figure 2) The main five sequence steps of the VLS growth procedure as 

explained in the text 
 
The bottom-up growth of Si-NWs can be described as shown in figure 
2; in the (step 1) depicted in the figure, bulk Si substrate, or a thin 
grown layer of Si on a cheap substrate such as PC (polycarbonate), 
PMMA (polymethyl methyl acrylate) or glass. In the (step 2), a few 
nanometers thick metal catalyst deposited on the surface, which upon 
annealing it segregates in isolated droplets in the (step 3). Precursor’s 
gas flows in the Ultra High Vacuum Chemical Vapor Deposition 
(UHVCVD) reactor such as silane (SiH4), where Si atoms react at the 
metal-droplet surfaces and dissolve into solution within the metal 
(step 4). The catalyst materials supersaturate, inducing precipitation 
of crystalline Si vapor atoms upon the substrate. As precipitation 
occurs only at the droplet metal (liquid)–semiconductor (solid) 
interfaces, the semiconductor atoms crystallite in wire structures with 
diameters controlled mainly by the diameter of the metal droplet 
(step 5). This growth practice has been termed by Wagner and Ellis as 
VLS growth after the three co-existing phases: the vaporous 
precursors (such as Siv), liquid catalyst droplets (such as Aul) and the 
solid silicon substrate (Sis). Notice the incorporation, which is quite 
likely, of some of seed metal atoms within the grown Si-NWs, as it 
has been described schematically in figure 2. 
 
Original work of growing Si-NWs: catalysts span from gold to 
aluminum 

Figure 3) Binary-phase diagram for the Au–Si system. The shaded area de-

scribed by VLS is the range of temperatures at which VLS growth occurs [1]. 
 
The cutting-edge technology of growing semiconductors for advanced 
applications is MBE where the control can be down to atomic level. 
MBE is an ultra-high vacuum technique that is used when thin films 
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of the highest quality and atomic level perfection are required. Where 
Shuji Nakamura, awarded the Nobel Prize in 2014 on the invention 
of the blue InGaN LED using the MBE system. Moreover, the very 
recent work by Sadeghi et al [36-38]. On growing BaZrS3 
chalcogenide perovskite thin films by MBE. 
The technique of Nanoscale Chemical Templating (NCT) which was 
invented in 2013 by Khayyat et al, controlling the position of growing 
Si-NWs using chemically active catalysts [37]. Based on the binary 
phase diagram, as shown in Figure 3, of Si and Au, the lowest melting 
temperature for the Au–Si eutectic is 363°C. The eutectic is lower 
than the melting points of Au and Si, which are 1064°C, and 1414°C 
respectively. Considering that the liquid phase of the metal is 
thermodynamically equilibrated with the solid one of the substrates, 
the lowering of the melting point, with the size of the droplet is given 
by equation 1. 
 
            𝛿𝑇 =  2𝜎. 𝑇0 (𝜌. 𝐿. 𝑟)⁄                 Equation 1 
 
Where δT is the lowering of the melting point, σ is the interfacial-energy,  
T_0 is the melting point of the bulk metal, ρ is the material density, 
L is the latent heat, r is the radius of the circle of the catalyst. 
 

As shown in the phase in Figure 3, the eutectic temperature can 
be summarized as a mixture of two elements at certain 
proportions that its melting point is much lower than the melting 
point of either of the two elements that make it up. Thus, 
annealing the samples which composed of Au film evaporated on 
Si substrate to the liquid Au–Si eutectic temperature of 363°C. If 
these Au–Si alloy droplets are placed in an ambient containing a 
gaseous silicon precursor such as silane (SiH4), the precursor 
molecules decompose into Si and H2 at the outer surface of the 
metal droplets, thereby supplying additional Si to the Au–Si alloy. 

 
 

a)                                          b) 
 
 
 
 
 
                                    c) 
 
 
 
 
 
 
 

Figure 4) (a) Schematic representation of epitaxial growth of Si-NWs, (b) 
epitaxial growth, i. e; the crystal structure of the grown nanowires is similar to 
the substrate, (c) SEM micrograph of epitaxial grown Si-NWs on Si(111) 

substrate catalyzed with Al. [39] 
 

It has been confirmed experimentally that Si-NWs grow 
perpendicularly on Si (111), as it is represented in Figure 4. However, 
the growth direction of the Si-NWs by any possible variation on one 

or more growth parameters including the growth temperature, which 
can be attributed in term of surface/interface energy . 
 
There are a number of CVD systems exist; these can be classified by 
several parameters mainly the base and operation pressure, such as 
Ultra High Vacuum Chemical Vapor Deposition (UHVCVD) [25, 
26]. 
In the VLS wire growth the radius of the seed droplet relates to the 
radius of the nanowire as described in Equation 2.           
   

          𝑅 = 𝑟√1 (1 − (𝜎𝑙𝑠 𝜎𝑙⁄ )2)⁄            Equation 2 
 
 Where σ l is the surface tension of the liquid catalyst, and σ l is the 
surface tension of the liquid catalyst interface, r is the radius of the Si-
NWs, and R is radius of the seed droplet or catalyst. Studying the 
various related growth parameters of pressure, temperature and 
position are of critical importance for implementation of Si-NWs as 
building units at various applications.  
 
Innovative approach of growing Si-NWs: Nanoscale Chemical 
Templating technique 
 
(I) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(II) 
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(III) 
 
 
 

 
 
 
 
 
 
 
 
 
Figure 5) (I) (a)–(c) The NCT technique schematic representation and SEM 

micrographs. ((a1), (b1), (c1) and (c4)) and plan view ((a2), (b2), (c2) and 
(c3)). The scale bars are as follows; (a1) and (b1) 100 nm; (c1) 300 nm; 
(a2), (b2), and (c2) 1 μm; (c3) and (c4) 20 μm. 

(II) Silica microspheres representation of the NCT technique (a& b), and the 

corresponding SEM micrograph as a proof of the concept. (II-a) The silica 
microspheres are dispersed on a Si substrate, then Al deposition and the 
subsequent annealing process, Al reacts with the oxide (SiO2) in the 
microspheres, but the Al droplet on the Si substrate, between the microspheres, 
are ready to seed the growth of Si-NWs, (II-b). A cross-sectional SEM image, 
note the bright core of the microspheres, as shown by arrow 1 at both the 
schematic & SEM of the unoxidized silica (SiO2) and the darker contrast 
(marked as arrow 2) at the microsphere surface where the Al was deposited 
and the planner growth of Si was occurred. 
(III) Selective growth of AlGaAs for further applications, as represented 

schematically. 
 
It is of special importance to control the spatial placement of Si-NWs 
for device fabrication. Photo lithography or Electron-Beam 
Lithography can be used for predefining the precise position of the 
catalysts, and consequently the spatial placement of nanowires. The 
topic of controlling the growth position of Si-NWs is an active 
research topic among several research groups [28-39]. Most of the 
well-established research projects on positioning Si-NWs for further 
device integration have used Au.  
The innovative approach of the spatial placement of Si-NWs known 
as Nanoscale Chemical Templating (NCT) has several advanced 
applications. NCT main application is growing Si-NWs catalyzed Al, 
which is p-type dopant and a standard metal in silicon process 
industrial line. The technique is based on patterning a substrate, such 
as Si, Ge, or GaAs, which is capable of forming alloys with Al during 
a following annealing step [26]. 
The concept of the NCT technique arises as a technical innovative 
solution of the issue of the defective thin planar grown layer (a few 
nanometers) between the grown Si-NWs, during the time of growing 
several hundred nanometers of NWs. Now, what does make NCT an 
innovative solution [26] : 
NCT technique is a method involves the following advantages: 

 Does not require seed material removal (Al) (see fig. 5 (I). 

 Does not require any lithography steps (see fig. 5 (II). 
 Multiple application space (see fig. 5 (III). 
 
Figure 5 (I) explains how NCT does not require Al removal. (I-a) 
shows the patterned oxidized surface of the Si substrate forming SiO2 

layer after photo- or electron beam-lithography. (I-b) shows 
schematically the sample after Al deposition and anneal-ing, where 
agglomeration occurs of Al:Si feature in the openings forming the 
NW seeds, while the Al in contact with SiO2 has reacted with and 
roughened the surface. (I-c) shows the NW growth. Notice that a 
single NW per opening is achieved with fidelity higher than 90%. 
[38] (I-c3), (I-c4) show a larger area containing both a patterned area 
and an area with no oxide on the left where random growth appears.  
Silica microsphere can be used to control the position of the grown 
Si-NWs, as described in fig.5 (II). In comparison to the previous 
approach of lithography, here silica microspheres play the role of 
SiO2 layer in templating the growth placement of Si-NWs. The 
schematic representation of spinning silica microsphere, where no 
lithography is required, on Si substrate, followed by a thin layer 
evaporation of Al (10 nm) and the sub-sequent step of annealing as 
shown in (a), where (b) shows the Si-NWs growth between silica 
microspheres, where growth optimization can be undertaken in 
future work.  
The concept of patterning III-V semiconductor materials selectively is 
of high industrial importance and it is considered as one of the 
applications of the NCT technique (III) [26]. This suggested 
application can be extended to forming novel patterning in III-V 
semiconductors (see fig. 5 (III)). For example, Al reaction with GaAs 
will lead to formation of GaAl As selectively in exposed GaAs regions, 
thereby allowing obtaining patterned GaAlAs and GaAs regions 
adjacent to each other. Such structures have applications for 
optoelectronic and FET-like devices.  
 
Applications on Nanoscale Chemical Templating Technique 
There are several applications of the NCT technique of Si-NWs, such 
as photovoltaic (PV) made of p-n junctions of NWs as shown in 
figure 6, or can be used to improve the resolution of Atomic Force 
Microscopy (AFM) (figure 7), and in Metal Oxide Semi-conductor 
Field Effect Transistor (MOSFET) to overcome the technological 
limit of the channel length using Si-NWs meeting the target of 
miniaturizing as shown in figure 8 [27]. 

 
               c) 

 
 
 
 
 

 
 
 

 

Figure 6) Schematic representation of (a) Si-NW as an axial heterojunction. 

(b) Radial heterojunction (c) PV cell as a core-shell [3]. 
 

Photovoltaic Cells 
PV Cells made of Si-NWs p-n junctions have attracted the attention 
of the scientific community, because of their potential benefits in 
their short carrier diffusion length across the diameters of the NWs, 
and their high light absorption. There are several potential benefits of 
Si-NWs solar cells over conventional bulk Si one or thin-film devices 
related primarily to cost reduction. This is basically because the Si 

c) 
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substrates do not need to be of high purity to fabricate solar cells of 
Si-NWs. The potential cost of the PV cells reduces by lowering the 
purity standard and the amount of Si substrates [6]. There are several 
research groups are working in developing PV cells based on Si-NWs. 
The Lieber and Atwater and other groups have developed core-shell 
growth for their Si-NWs p-n junctions. Moreover, the ability to make 
single-crystalline Si-NWs on low-cost substrates such as Al foil 
represents an extra parameter to reduce the overall cost of the cells. 
Catalyzing the growth of Si-NWS and p or n doping the grown Si-
NWs at the same time will be of potential importance for advanced 
applications. Catalysts can be selected based on phase binary phase 
diagrams [1, 5, 12, 20, 40].  
During devices’ characterization it has been noticed that some of the 
PV Si-NW device are shorted junctions. To study these problem two 
experiments were designed, to investigate the growth temperature of 
the capping layers (planner growth without NWs) on Si (100) and Si 
(111) and measure the shunt resistance vs. position of the grown 
layer. The shunt resistance varies slightly across the surface of the 
sample; however, it was low indicating defective planner growth. On 
the other hand, the growth temperature seems to affect the potential 
barrier. At this point it was thought that it is important to come up 
with a method to isolate the planner defective grown areas between 
NWs from the rest of the device, i.e., Nano patterning. This 
necessarily eliminates all of the previously described methods of 
templating the growth, because the metals cannot be protected from 
oxidation during the patterning processes. The current NCT 
technique presents a technique that uses the oxygen sensitivity to 
template the growth of nanowires with Al and other oxygen reactive 
materials. In NCT technique, SiO2 layer has been used as a 
separation layer between the planar defective growths [5, 12].  
Rectifying junctions of an array of Si-NWs, catalyzed by Al, were 
fabricated (see figure 7). The prepared junctions have exhibited slight 
light sensitivity, which yield relatively low energy conversion 
efficiency. However, the fact that silicon solar cells based on 
nanowires have very short p-n junctions which might increases the 
carrier collection in the core-shell of the nanowire structure. 
 

 
 
 

Figure 7) Growing Si-NWs (p-type) doped with Al using NCT, then forming 

shell of n-type building p-n junctions, where voids appear between formed 
junctions, finally fabricating the PV cells of 1 cm2 surface area. 
 
The above stated details of advantages and challenges of PV devices 
based on Si-NWs can be summarized as follows (Table 1) 
 

 

TABLE 1  

List of the main advances & challenges of PV cells based 

on Si-NWs technology. 

 

Advantages Short carrier diffusion 
length, good absorption of 
light 
Low cost 

Si-NWs can be grown on 
cheap substrates 

Challenges Engineering Depletion 
Region Width & Density 
Surface Passivation 

Isolation between Si-NWs 

Reducing shunt 
resistances. 

 
The possible advantages of integrating Si-NWs in relatively large scale 
solar cells make further investigations worth through simulation and 
experimental studies for future generation devices. The cumulative 
effort of various research groups, including ours, have worked to 
point out the technical challenges which of producing large area 
(>mm2) solar cells from core-shell Si-NWs and other related 
structures [42]. Rectifying junctions of an array of Si-NWs, catalyzed 
by Al, were fabricated. The shunt regions between the NWs were 
identified, and a novel oxidation scheme of NCT technique was 
employed. 
 
Atomic force microscopy 
AFM is a machine invented in 1968, for imaging the surface of 
samples at scales ranging from microns to nanometer, by means of 
mechanical forces. The AFM consists mainly of three parts: the 
optical head, the scanner, and the base. The optical head is the main 
part of the AFM, which is called sometimes the optical sensing 
system. It is made of a very sharp tip (few nm wide) which is extended 
down from the end of a small cantilever of SiN or Si (~100 μm long), 
and an optical system to sense the cantilever deflection.  
The fast progress of nanoscience has been benefited from the 
invention of the AFM, and this development has been increased by 
the advancement of AFM based on the progress of Si-NWs growth 
techniques. It has been proposed to improve the resolution of AFM 
tips in a production scale [27]. The concept of the technique of 
improving the resolution of the AFM tips is described in figure 8, 
along with the various steps of the Si-NW growth on the tip of the 
available Si (100) or Si (111) AFM tips. Figure 8 is showing an AFM 
tip comprising a silicon cantilever, an etched silicon pyramid formed 
near one end of cantilever, and a Si-NW is extending from the apex 
of pyramid. An oxide coating covers the pyramid surfaces with the 
exception of an opening from which silicon wire was grown. The wire 
is typically grown by the VLS method in a CVD reactor, which uses a 
catalyst to promote the wires growth. Typical catalysts may include 
metals such as Al, Au, Ti, with Al being the preferred choice. The 
growth of Si-NWs has two components; the first component is the 
longitudinal growth, which is the growth promoted by the catalyst, 
and defines the wire length, and the second component is the radial 
growth. This component is reason for the tapered shape of wire. The 
radial growth is usually undesirable and needs to be minimized. 
Lower growth temperature can reduce the amount of tapering by 
increase the ratio of the longitudinal growth rate to the radial growth 
rate. However, the use of a lower growth temperature has some 
disadvantages among which are introduction of crystal defects and a 
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lower absolute longitudinal growth rate which render the fabrication 
process more expensive as throughput is reduced. 
The use of an Al catalyst provides a unique advantage for obtaining 
wires with no tapering, i.e. wires that have a constant cross-sectional 
shape. The wire comprises of two parts, a core and a shell. When Al 
is used as a catalyst the core will be doped with Al, form an acceptor 
level in silicon (Ea-Ev=0.067 eV) and as a result the core will be p-type 
doped. The shell which forms due to the radial growth remains 
mostly undoped. A Si etchant such as tetramethylammonium 
hydroxide (TMAH) or potassium hydroxide (KOH) can now be used 
to etch electively the undoped shell with respect to the p-doped core. 
It is showing the wire after the shell was etched.  
The grown Si-NW on Si(100) of the squared-base tip is 45° tilted, 
while Si-NW grow perpendicularly on the tip of the AFM tip of the 
triangular base of Si(111) [32-35]. Where further reduction of the 
average wire diameter to the nanometer scale can be done via 
oxidation or hydrogen annealing [36-43]. 
 
 

 
 

Figure 8) Schematic illustration of detailed steps of Si-NWs integration with 

AFM tips [27], the square based Si(100) or the triangle based Si(111) 
cantilever were first oxidized forming SiO2 (step 1), spinning photoresist (step 
2), oxygen plasma etching the tip (step 3), BOE etching removing the oxide 
layer at the tip (step 4), photoresist removal (step 5), followed by Al deposition 
(step 6), annealing to ball-up the Al droplet at the tip (step 7), finally Si-NWs 
growth perpendicularly on Si(111) and tilted on Si(100). 
 
The radius of a Si-NW can be reduced using oxidation sharpening 
technique. The tip with the grown NW is thermally oxidized at 950 
°C for a certain time to oxide the outermost layer the NW, then etch 
AlSiOx in HF. This enables steeply rising steps to be imaged without 
the result showing the shape of the AFM tip.  
 
AFM can be used to measure surface roughness, scratching, and 
indentation. The assembled Si-NW scanning tips are suitable for 
critical topography investigations com-parable with the original 
scanning tips considering the high aspect-ratio nature of NWs and 
the superior mechanical hardness [44-46]. Moreover, the growth 
direction can be tailored based on the required AFM investigations. 
On Si (111), NWs will grow perpendicularly, where as they grow 45o 
tilted on Si (100) surfaces. 
 
Metal Oxide Semiconductor Field Effect Transistors 
 
 

   
 

 
 

 
 
 
 

Figure 9) (a) shows a schematic representation of an (npn) MOSFET the 

conventional one, in parallel with the innovative one of NWs (b) shows the 

migrating of charges based on the applied voltages, and (c) presents the 

formation of the inversion layer, the channel across the diameter of the NW. 

 
MOSFET current technology can be improved in some of its parts 
using Si-NWs, as shown in figure 9 [8]. Employing Si-NWs as a 
conduction channel of the npn MOSFET between the source and 
drain for minimizing the short‐channel effects. When a positive 
voltage is applied to the gate (p-type) the holes in the p-type 
semiconductor are repelled from the surface (the opposite voltage is 
correct for pnp MOSFET), then the minority carrier conduction 
electrons are attracted to the top surface of the transistor. The applied 
gate voltage exceeds the threshold value, to be followed by an 
inversion layer formation at the uppermost layer providing a 
conduction channel between the source and the drain. The width of 
the conduction channel is controlled by the diameter of the Si-NWs. 
Where the presented a 3-D schematic diagram of the circular gate-all-
around Silicon On Insulator (SOI) nanowire FET with z-axis physical 
symmetrical contraction, in a structure can be called resonant 
tunneling nanowire FET (RT-NWFET). They are more key 
parameters have showed superior properties, where it can be 
speculated that, the built device via simulation, of RT-NWFET would 
be an important device for the complementary MOSFET 
applications. 
Moreover, effective integration of Si-NWs and MOSFET will result in 
modern Complementary Metal‐Oxide‐Semiconductor (CMOS) 
technology along with memory applications. 
 

Because of the enhanced surface to volume ratio of NWs, their 

transport behaviour may be adjusted by altering their surface 

conditions, and this property may be utilized for sensor applications. 

Si-NWs sensors will potentially be smaller, operate with less power, 

and react faster [43-45]. The concept can be extended to forming 

novel patterning in III-V semiconductors. For example, Al reaction 

(a) 

(b) (c) 
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with GaAs will lead to formation of GaAl As selectively in exposed 

GaAs regions, thereby allowing obtaining patterned GaAlAs and 

GaAs regions adjacent to each other. Such structures have 

applications for optoelectronic and FET-like devices. 

 

Figure 10) The total cumulative publications on nanowires & nanorods 

topics in 10 years (2011-2020, there is no available data yet for the 2021, at 

the time of writing this article Dec. 2021). Where x-axis represents the 

number of articles in kilo.  

 

Nanomaterials like the nanowires or nanorods have dimensions 

within the nanometre range. They are called one- dimensional 

nanostructures materials. The difference between them and their 

naming are attributed to the relative ratio between their lengths to 

their diameters, i.e.; their aspect ratios. The aspect ratio is smaller in 

case of nanorods; it could be in the range of 3 to 5. While nanowires 

have diameters of the order of tens of nanometres, with 

unconstrained length scales, with aspects ratios could be above 1000. 

The ever-growing demand for smaller electronic devices is prompting 

the scientific community to produce circuits whose components 

satisfies size and weight requirements. This demand can be reached 

be employing Si-NWs, considering their distinct properties, and their 

combined attributes of cost effectiveness and mature manufacturing 

infrastructures and use them as nanocomponents to build Nano 

circuits and Nano biosensors [46-50].  

Control of the synthesis and the surface properties of Si-NWs may 

open new opportunities in the field of silicon Nano electronics 

Moreover,  

To sum up, semiconductors will continue to inspire us and 

improving our life quality via continuous dedicative research 

activities, overcoming the current fabrication barriers [50-54]. 

MOSFET is the key unit of electronic industries, microprocessors, 

memory chip, and telecommunications circuits. Based on this, any 

possible limitations with MOSFET technologies, will consequently 

affect the other related applications [56, 59]. Moore observed an 

exponential doubling in the number of transistors in every 18 months 

through the size reduction of transistor components. This limitation 

is directly related to the fact that we cannot break down the atomic 

size barrier, which implies a fundamental size limit at the 

atomic/nucleus scale. After all, there is no more direct 18-month 

doubling, instead there are other forms of transistor doubling may 

happen at a different slope, which opens doors for more research on 

nanowires and other Nano technological unit integration. Simulation 

models of suggested device structures can provide foresight report of 

the possible approaches of the various available nanostructure 

integrations [55, 61]. 
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