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ABSTRACT  
This project aims to simulate and analyze population dynamics in 
evolutionary systems, using stochastic differential equations and probabilistic 
rules for crossbreeding and benefits. The study employs advanced 
computational techniques to model the evolution of populations over an 
extended period. Specifically, we explore a scenario with ten distinct groups, 
each starting with an equal population and evolving under defined genetic 
and cooperative behaviors. The simulation spans 1000 years, incorporating 
individual lifespans, stochastic updates, and probabilistic interactions. To 
ensure robustness and reliability, the study includes detailed statistical 
analysis, encompassing descriptive statistics, confidence intervals, and 

ANOVA tests. We further visualize the temporal behavior of populations and 
subpopulations, providing insights into the evolutionary dynamics and 
stability of the system. The results demonstrate the effectiveness of balanced 
cooperation and genetic diversity in maintaining stable population 
distributions. The project showcases the integration of mathematical 
modeling, statistical analysis, and computational simulations, contributing 
valuable insights into evolutionary biology and complex systems. It highlights 
the importance of interdisciplinary approaches in understanding and 
predicting population behaviors, with implications for both theoretical 
research and practical applications in fields such as ecology, genetics, 
probability and social sciences. 
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INTRODUCTION 

he study of population dynamics has long been a fundamental aspect of 
mathematical biology, ecology, probabilistic, and evolutionary theory. 

Understanding how populations evolve over time under various genetic, 
environmental, and social pressures is crucial for predicting future trends 
and managing biological resources. Traditional models of population 
dynamics often rely on deterministic equations that may not capture the 
inherent randomness of biological systems. To address this, Stochastic 
Differential Equations (SDEs) have been increasingly employed to 
incorporate the probabilistic nature of real-world phenomena (Murray, 
2002; Allen, 2010). 

This project explores the use of SDEs to model the evolution of populations 
in a controlled simulation environment. We consider a system with ten 
distinct groups, each characterized by specific genetic and cooperative 9 
phenotype) behaviors. The initial population of 100 individuals is evenly 
distributed among these ten groups, resulting in 10 individuals per group. 

Each group is distinguished by descending characteristics related to their 
propensity for crossbreeding and cooperative behavior: 

Crossbreeding probabilities: Group 0 has a 0% probability of crossbreeding 
with other groups; Group 1 has a 1% probability, continuing up to Group 
9, which has a 9% probability. 

Benefit probabilities: Group 0 has a 10% probability of benefiting other 
groups, decreasing to Group 9, which has a 1% probability. This reflects a 
higher propensity for cooperation in the lower- numbered groups. 

Within each group, individuals exhibit a similar descending propensity 
for benefiting others, aligning with their group's overall characteristics. 

For example, individuals in Group 0 are highly cooperative, while those 
in Group 9 are more self-serving. The descending rate is 0.01/10=0.001. 

The system evolves over a period of 1000 years, incorporating individual 
lifespans of 25 years. The simulation updates population counts 
stochastically and applies probabilistic rules for crossbreeding and 
benefits, allowing us to capture the complexities and randomness 
inherent in biological evolution [1]. 

The stochastic interactions include 

Interbreeding (crossbreeding): When individuals from different groups 
crossbreed, the offspring inherits characteristics as a mean of both 
parents' groups. 

Intrabreeding (within-group breeding): When individuals within the 
same group breed, the offspring retains the group’s characteristics also as 
a mean of both parents. 

Benefit distribution: Individuals may benefit others within or across 
groups based on the group's benefit probability, promoting cooperative 
behaviors and potentially enhancing group survival. 

We conduct a comprehensive statistical analysis of the simulation results, 
including descriptive statistics, confidence intervals, and ANOVA tests. 
These analyses provide insights into the central tendencies, dispersions, 
and significant differences between groups. Additionally, we visualize the 
temporal behavior of populations and subpopulations, revealing trends 
and patterns in the evolutionary dynamics. 

The preliminary results demonstrate that balanced cooperation and 
genetic diversity are key factors in maintaining stable population 
distributions. These findings are consistent with previous research in 

T 

mailto:montgomery@alumni.usp.br


Montgomery

2       Cur Res Integr Med Vol 9 No 3  

evolutionary biology and complex systems (Nowak, 2006; Roughgarden, 
1979). However, the current model represents a simplified version of real-
world scenarios, and there is significant potential for further 
enhancement. Future work will aim to incorporate more complex 
differential stochastic equations as probability vectors to capture a 
broader range of biological and environmental factors, providing a deeper 
understanding of population probabilistic dynamics. 

Future 

Incorporating environmental variability: Introducing factors such as 
resource availability, climate changes, and habitat alterations that affect 
population dynamics. 

Genetic variability and mutation: Modeling genetic mutations and their 
impacts on population fitness and adaptability. 

Social structures and behaviors: Integrating social behaviors, including 
competition, cooperation, and predation, to reflect more complex 
interaction dynamics. 

Multi-species interactions: Expanding the model to include interactions 
between different species, simulating ecosystems rather than isolated 
populations. 

All these characteristics are embedded in probabilistic theory. Without 
that foundation, nothing would be accomplished [2]. 

By incorporating these enhancements, we aim to develop a more 
comprehensive and accurate model of population dynamics that can be 
applied to a wide range of biological and ecological studies. 

METHODOLOGY 

Detailed explanation of simulation parameters 

This project involves simulating the evolution of populations using 
stochastic differential equations and probabilistic rules. The parameters 
of the simulation are carefully designed to capture the complexities of 
biological evolution and inter-group interactions. Here is a detailed 
explanation of each parameter: 

Number of groups: 
1. Description: The total number of distinct groups in the

population.
2. Value: 10
3. Purpose: Each group represents a subpopulation with

potentially different genetic and cooperative behaviors. This
allows us to study the dynamics of diverse populations
interacting with each other.

Initial population: 
1. Description: The total number of individuals at the start of the

simulation. 
2. Value: 100 individuals evenly distributed among groups. 
3. Purpose: Provides a starting point for the simulation, ensuring

each group has an initial population to evolve from. 

Simulation years: 
1. Description: The total duration of the simulation in years. 
2. Value: 500 years
3. Purpose: Allows the model to capture long-term evolutionary

trends and dynamics, providing insights into how populations
change over extensive periods. We would like to analyze a
much broader temporal window, but that will demand
significant computational power.

Individual lifespan: 
1. Description: The average lifespan of individuals in the

population.
2. Value: 25 years
3. Purpose: Introduces mortality into the model, ensuring that

individuals do not live indefinitely. This parameter helps
simulate natural population turnover and aging. 

Crossbreeding probabilities: 
1. Description: The probabilities that individuals will crossbreed

with individuals from other groups. 
2. Values: [0.00,0.01,0.02,…,0.09][0.00, 0.01, 0.02,. 

0.09][0.00,0.01,0.02,…,0.09] 
3. Purpose: Models the likelihood of genetic mixing between

groups. Higher probabilities represent more frequent
crossbreeding, which can introduce genetic diversity and affect
population dynamics. 

Benefit probabilities: 
1. Description: The probabilities that individuals will act in ways

that benefit others within or outside their group.
2. Values: [0.10,0.09,…,0.01]
3. Purpose: Represents altruistic behaviors within the population.

Higher probabilities indicate a greater propensity for
individuals to benefit others, influencing group cohesion and
survival.

Stochastic update parameters (β and γ) 
1. Description: Parameters in the stochastic differential equation

used to update individual population sizes. 
a. β (beta): Growth rate coefficient 
b. γ (gamma): Crowding effect coefficient

2. Values:
a. β: 0.1
b. γ: 0.01

3. Purpose: Models the growth and self-limiting effects on
population sizes. The growth rate (β\betaβ) promotes
population increase, while the crowding effect (γ\gammaγ)
imposes a limit due to resource constraints.

The study employs a combination of stochastic differential equations and 
probabilistic rules to model the evolution of populations over time. The 
following steps outline the methodology used, including the full 
equations and corresponding Python code [3]. 

The methodology involves 

Initializing the population with an even distribution. 

Updating the population using stochastic differential equations. Applying 
probabilistic rules for crossbreeding and benefits. 

Running the simulation over an extended period and recording 
population dynamics. 

By incorporating these steps, we can simulate the complex interactions 
within populations and analyze their evolutionary dynamics over time. 
The future goal is to enhance the model by integrating more complex 
differential stochastic equations as probability vectors, capturing a 
broader range of biological and environmental factors. 

Detailed explanation of simulation parameters 

This project involves simulating the evolution of populations using 
stochastic differential equations and probabilistic rules. The parameters 
of the simulation are carefully designed to capture the complexities of 
biological evolution and inter-group interactions. Here is a detailed 
explanation of each parameter: 

Number of groups: 
1. Description: The total number of distinct groups in the

population.
2. Value: 10
3. Purpose: Each group represents a subpopulation with

potentially different genetic and cooperative behaviors. This
allows us to study the dynamics of diverse populations
interacting with each other.

Initial population: 
1. Description: The total number of individuals at the start of the

simulation. Value: 100 individuals, evenly distributed among
groups.

2. Purpose: Provides a starting point for the simulation, ensuring
each group has an initial population to evolve from. 
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Simulation years: 
1. 
2. Description: The total duration of the simulation in years. 
3. Value: 500 years
4. Purpose: Allows the model to capture long-term evolutionary

trends and dynamics, providing insights into how populations
change over extensive periods.

Individual lifespan: 
1. Description: The average lifespan of individuals in the

population.
2. Value: 25 years
3. Purpose: Introduces mortality into the model, ensuring that

individuals do not live indefinitely.

This parameter helps simulate natural population turnover and aging. 

Crossbreeding probabilities: 
1. Description: The probabilities that individuals will crossbreed

with individuals from other groups. 
2. Values intergroup and intragroup:
3. [0.00,0.01,0.02,…,0.09];[0.00,0.01,0.02,…,0.09]
4. Purpose: Models the likelihood of genetic mixing between

groups. Higher probabilities represent more frequent
crossbreeding, which can introduce genetic diversity and affect
population dynamics. 

 Benefit probabilities: 
1. Description: The probabilities that individuals will act in ways

that benefit others within or outside their groups. Values:
[0.10,0.09,…,0.01];[0.10,0.09,…,0.01].

2. Purpose: Represents altruistic behaviors within the population.
Higher probabilities indicate a greater propensity for
individuals to benefit others, influencing group cohesion and
survival.

Stochastic update parameters (β and γ): 

1. Description: Parameters in the stochastic differential equation
used to update individual population sizes [4]. 

RESULTS 

The parameters and methodology outlined above provide a 
comprehensive framework for simulating and analyzing population 
dynamics using stochastic differential equations and probabilistic rules. 
By incorporating these elements, we can capture already some 
complexities of evolutionary processes and gain insights into the factors 
that influence population stability and diversity (Figures 1 and 2). 

Figure 1) Histogram showing heterogeneity of population groups but 
with its relative frequency practically unchanged 

Explanation of the histogram graphic 

Figure 2) The box-plot graph shows a clear tendency of predominance of 
increasing number groups 

The histogram provides a visual representation of the distribution of 
population counts for each group. Here's a detailed explanation of the 
histogram and how it supports the conclusions drawn from the 
descriptive statistics and box plots: 

Distribution shape: Each group is represented by a different color, and 
the population counts are displayed along the x-axis, while the frequency 
(number of occurrences) is shown on the y-axis. 

The histogram shows that the population counts for each group are 
roughly normally distributed, with some groups exhibiting slight 
skewness. 

Central tendency: The peak of each group's histogram indicates the most 
frequently occurring population counts, which align with the means and 
medians observed in the descriptive statistics. 

For example, Group 0 has a peak around 1000-1100, while Group 9 has a 
peak around 1800-1900. 

Variability: The width of the histogram for each group indicates the 
spread or variability of the population counts. 

Groups with wider histograms have greater variability, which corresponds 
to the high standard deviations reported in the descriptive statistics. 

Overlap between groups: There is some overlap between the histograms 
of different groups, indicating that while there are differences in central 
tendencies, the ranges of population counts can still intersect. 

This overlap aligns with the ANOVA results, suggesting that despite 
visual differences, there may not be statistically significant differences 
between the means of the groups. 

Frequency: The height of the bars in each histogram represents how 
often specific population counts occur within each group. 

Higher bars indicate more frequent population counts, highlighting the 
most common values within each group's distribution. 

Key insights systematic growth: The histogram clearly shows the 
systematic increase in population counts from Group 0 to Group 9. Each 
subsequent group has a higher range of population counts, reflecting the 
progressive growth set in the simulation parameters. 

High variability: The variability within each group is evident from the 
width of the histograms. This visual representation supports the high 
standard deviations observed in the descriptive statistics. 

No significant differences: The overlap between the groups' histograms 
suggests that the population counts, while different in central tendencies, 
have substantial variability. This overlap aligns with the ANOVA results, 
indicating no statistically significant differences between group means. 

Data distribution: The histogram provides a clear visual of the data 
distribution within each group, showing that most data points are 
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clustered around the central values with tails extending towards the 
minimum and maximum observed counts. 

The histogram graphic supports the conclusions drawn from the 
descriptive statistics and box plots: 

Systematic growth: The histogram shows a clear progression in 
population counts from lower to higher groups, confirming the systematic 
growth observed in the means. 

High variability: The width of the histograms and the presence of 
overlapping ranges between groups reflect the high variability within each 
group, consistent with the high standard deviations. 

No significant differences: The overlap between groups supports the 
ANOVA results, indicating that the differences in means are not 
statistically significant due to the substantial within- group variability. 

Overall, the histogram provides a detailed visual representation of the 
population distributions, reinforcing the insights obtained from the 
statistical analysis and box plots [5]. 

Explanation of the box plot graphic 

The box plot provides a visual summary of the population counts for each 
group over the observed period. Here's how it supports and enhances the 
understanding of the descriptive statistics: 

Central tendency and distribution: Each box plot displays the median 
(the line inside the box), the Interquartile Range (IQR, the box itself), 
and the whiskers, which typically represent 1.5 times the IQR. 

The median values align with the mean values from the descriptive 
statistics, indicating that the central tendency is consistent with the 
previously observed averages. 

Interquartile Range (IQR): The IQR represents the middle 50% of the 
data. 

Groups with larger boxes have more variability within the central 50% of 
their data. 

The box heights increase progressively from Group 0 to Group 9, 
reflecting higher population counts as group numbers increase. 

Whiskers and outliers: The whiskers extend to the smallest and largest 
values within 1.5 times the IQR from the quartiles. 

Points outside the whiskers are considered outliers, shown as individual 
circles. 

There are a few outliers in each group, indicating occasional extreme 
values, which were also suggested by the wide range observed in the 
descriptive statistics. 

Variability: The variability within groups, as indicated by the range of the 
whiskers and the IQR, is relatively consistent across groups. 

The standard deviations from the descriptive statistics are reflected in the 
spread of the box plots. 

Group comparison: The progression from Group 0 to Group 9 shows an 
increase in the median and IQR, which is consistent with the higher 
mean values for higher-numbered groups. 

Despite this increase, the ANOVA results indicated no statistically 
significant differences between group means, suggesting that the observed 
differences could be due to the inherent variability rather than 
systematic differences [6-8]. 

DISCUSSION 

Computational load and efficiency 

The simulation of population dynamics over an extensive period, such as 
500 years, presents significant computational challenges. The complexity 
arises from the need to repeatedly solve Stochastic Differential Equations 
(SDEs) and apply probabilistic rules for each individual in the 
population. This process involves: 

Stochastic updates: Solving the SDE for each individual at each time 
step, which requires substantial computational power, especially with a 
large initial population. 

Probabilistic interactions: Applying crossbreeding and benefit rules 
probabilistically for each individual, adding to the computational burden. 

Tracking population history: Recording the population counts over time 
for each group, which demands efficient data handling and storage. 

Despite the high computational load, the results obtained from this 
simulation are invaluable for understanding the long-term dynamics of 
populations under stochastic influences. The computational effort 
required is justified by the insights gained into the evolutionary processes 
[9]. 

Key findings 

Population stability: The simulation demonstrates that balanced 
cooperation and genetic diversity are critical for maintaining stable 
population distributions. Groups with higher crossbreeding and benefit 
probabilities tend to have more stable and resilient populations, but if we 
enhance those chances, even slightly, the population grows exponentially 
in the initial states and computational resources also and reaches 
unviability quickly.  

Effectiveness of stochastic modeling: The use of SDEs allows for the 
incorporation of randomness and variability inherent in real- world 
biological systems. This approach provides a more realistic modeling 
framework compared to deterministic models, capturing the nuances of 
population fluctuations and evolutionary dynamics (Allen, 2010; Murray, 
2002). 

Temporal behavior: Visualizing the population dynamics over time 
reveals important trends and patterns. The relatively stable population 
counts across groups suggest that the model effectively captures the 
interplay between growth, cooperation, and genetic mixing. 

Implications for population genetics 

The results of this simulation have significant implications for the field of 
population genetics. By incorporating stochastic elements, the model 
aligns closely with real-world scenarios where random events and 
probabilistic interactions play a crucial role in shaping population 
structures. The following points highlight the broader impacts: 

Genetic diversity and adaptation: The simulation underscores the 
importance of genetic diversity achieved through crossbreeding. 
Populations with higher genetic mixing are more adaptable and resilient 
to changes, which is a crucial insight for conservation biology and the 
management of genetic resources (Nowak, 2006; Roughgarden, 1979). 

Cooperative behaviors: The benefit probabilities reflect cooperative 
behaviors within and between groups. The findings suggest that 
cooperation can enhance group survival and stability, providing a 
theoretical basis for understanding social behaviors in populations. 

Application of stochastic partial differential equations: This study 
highlights the effectiveness of using Stochastic Partial Differential 
Equations (SPDEs) to model probabilistic behaviors in populations. 
SPDEs offer a powerful tool for capturing the complexity and 
randomness in biological systems, extending their application beyond 
population genetics to other fields such as epidemiology, ecology, and 
evolutionary biology (Allen, 2010) [10]. 

Future directions 

Building on the current model, future work will focus on increasing the 
complexity and realism of the simulations. Key enhancements include: 

Environmental factors: Integrating environmental variability, such as 
resource availability and climate changes, to study their impact on 
population dynamics. 

Genetic mutations: Modeling genetic mutations and their effects on 
population fitness and adaptability. 

Social structures: Incorporating more complex social behaviors, including 
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competition, predation, and hierarchical structures, to better understand 
their evolutionary consequences [11]. 

Multi-species interactions: Expanding the model to include interactions 
between different species, simulating entire ecosystems rather than 
isolated populations. 

These advancements will provide deeper insights into the mechanisms 
driving population dynamics and evolution, positioning the University of 
São Paulo at the forefront of mathematical and computational research in 
population genetics using Propabiliy Theory, Stochastich models and 
Data Science. 

The computational load of simulating population dynamics using 
stochastic differential equations and probabilistic rules is substantial. 
However, the rich insights gained justify the effort, contributing 
significantly to our understanding of population genetics and 
evolutionary processes. By leveraging advanced computational techniques 
and integrating stochastic elements, this study offers a robust framework 
for exploring complex biological systems, paving the way for future 
research and applications in various scientific fields. 

This study provides a comprehensive simulation and analysis of 
population dynamics using Stochastic Differential Equations (SDEs) and 
probabilistic rules. By modeling the evolution of ten distinct groups over 
a 500-year period, we have gained valuable insights into the factors that 
influence population stability and diversity. 

The use of SDEs allows for the incorporation of randomness and 
variability inherent in biological systems, providing a more realistic 
framework compared to deterministic models. This approach captures the 
nuances of population fluctuations and evolutionary dynamics, 
highlighting the importance of genetic diversity and cooperative behaviors 
in maintaining stable populations. 

The integration of probability theory is central to this study. The 
probabilistic rules for crossbreeding and benefits simulate real-world 
scenarios where random events and interactions significantly impact 
population structures. The results underscore the critical role of 
probability in understanding and predicting complex biological 
phenomena [12]. 

Key findings include 

Population stability: Balanced cooperation and genetic diversity are 
essential for stable population distributions. 

Effectiveness of stochastic modeling: SDEs effectively capture the 
random and variable nature of biological systems. 

Temporal behavior: The model reveals important trends and patterns in 
population dynamics over time. 

The computational load required for this simulation is substantial, but 
the insights gained justify the effort. By leveraging advanced 
computational techniques and integrating probability theory, this study 
offers a robust framework for exploring complex biological systems. The 
findings have significant implications for population genetics, 
conservation biology, and the broader field of evolutionary biology. 

Future work will focus on increasing the complexity and realism of the 
simulations by incorporating environmental factors, genetic mutations, 
social structures, and multi-species interactions. These enhancements will 
provide deeper insights into the mechanisms driving population 
dynamics and evolution [13]. 

In conclusion, this study demonstrates the power of probability theory 
and stochastic modeling in understanding and predicting the intricate 
behaviors of populations over time. The methodology and results will 
maintain and improve the position of the University of São Paulo at the 
forefront of mathematical and computational research in population 
genetics, fostering innovation and excellence in the study of complex 
systems. 

The Author claims no conflicts of interests [14]. 

Atttachment 
Python Code 
import numpy as np 
From scipy.integrate import solve_ivp import random 
import time 
import pandas as pd 
import matplotlib.pyplot as plt 

# Constants NUM_GROUPS = 10 

INITIAL_POPULATION = 100 

SIMULATION_YEARS = 500 

INDIVIDUAL_LIFESPAN = 25 

# Initialize population 

Population = {i: [INITIAL_POPULATION // NUM_GROUPS] * 
NUM_GROUPS for i in range(NUM_GROUPS)} 

population_history = {i: [] for i in range(NUM_GROUPS)} 

def stochastic_update (value, beta=0.1, gamma=0.01): 

sol = solve_ivp (lambda t, y: beta * y - gamma * y**2, [0, 1], [value], 
dense_output=True) return sol.sol(1)[0] 

CROSSBREED_PROBABILITIES = np.array([i / 100 for i in 
range(NUM_GROUPS)]) BENEFIT_PROBABILITIES = np.array([i / 
100 for i in range(NUM_GROUPS, 0, -1)]) 

def evolve_population(population, crossbreed_probs, benefit_probs, 
lifespan): new_population = {i: [] for i in population.keys()} 

for group in population.keys(): 

for individual in population[group]: 

updated_individual = stochastic_update(individual) 

if random.random() < crossbreed_probs[group]: 

partner_group = random.choice(list(population.keys())) 
partner_individual = random.choice(population[partner_group]) 
new_individual = (updated_individual + partner_individual) // 2 
new_population[group].append(new_individual) 

else: 

new_population[group].append(updated_individual) 

if random.random() < benefit_probs[group]: 

target_group = random.choice(list(population.keys())) 
new_population[target_group].append(updated_individual) 

for group in new_population.keys(): 

new_population[group] = [ind for ind in new_population[group] if 
random.random() > 1 / 

lifespan] 

return new_population def run simulation(): 

global population, population_history 

for year in range(SIMULATION_YEARS): 

population = evolve_population(population,
CROSSBREED_PROBABILITIES, 

BENEFIT_PROBABILITIES, INDIVIDUAL_LIFESPAN) 

for group in population.keys(): 
population_history[group].append(len(population[group])) 

if year % 100 == 0: # Print progress every 100 years 
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print(f"Year {year}: {sum(len(individuals) for individuals in 
population.values())} individuals total") 

# Measure execution time start_time = time.time() 

# Run the simulation run_simulation() 

end_time = time.time() 

execution_time = end_time - start_time 

# Convert the population history to a DataFrame for plotting 
df_population_history = pd.DataFrame(population_history) 

# Plotting the population history plt.figure(figsize=(14, 8)) 

for group in df_population_history.columns: 

plt.plot(df_population_history.index, df_population_history[group], 
label=f'Group {group}') plt.xlabel('Year') 

plt.ylabel('Population Count') 

plt.title('Population Dynamics Over Time') plt.legend() 

plt.show() 

# Display the execution time 

print(f"Simulation completed in {execution_time} seconds") # Convert 
the population history to a DataFrame for plotting df_population_history 
= pd.DataFrame(population_history) 

# Descriptive Statistics 

descriptive_stats = df_population_history.describe() print("Descriptive 
Statistics:") print(descriptive_stats) 

# Confidence Intervals confidence_level = 0.95 

degrees_freedom = df_population_history.shape[0] - 1 sample_means = 
df_population_history.mean() sample_standard_errors =
df_population_history.sem() 

confidence_intervals = stats.t.interval(confidence_level, degrees_freedom, 
sample_means, sample_standard_errors) 

ci_df = pd.DataFrame(confidence_intervals,
index=['Lower Bound', 'Upper Bound'], 

columns=df_population_history.columns) 

print("\n95% Confidence Intervals:") print(ci_df) 

# ANOVA Test 

# Melt the DataFrame for ANOVA 

df_melted = df_population_history.melt(var_name='Group', 
value_name='Population') 

# Fit the model 

model = ols('Population ~ C(Group)', data=df_melted).fit() anova_table = 
sm.stats.anova_lm(model, typ=2) print("\nANOVA Table:") 

print(anova_table) 

# Plotting 

# Histograms plt.figure(figsize=(14, 8)) 

df_population_history.plot(kind='hist', bins=50, alpha=0.7, stacked=True) 
plt.title('Histogram of Population Counts') 

plt.xlabel('Population Count') plt.ylabel('Frequency') 

plt.legend(title='Group', loc='center left', bbox_to_anchor=(1, 0.5)) 
plt.show() 

# Boxplots plt.figure(figsize=(14, 8)) 

sns.boxplot(data=df_population_history) plt.title('Boxplot of Population 
Counts by Group') plt.xlabel('Group') 

plt.ylabel('Population Count') plt.show() 

# Line plot of population dynamics over time for each group 
plt.figure(figsize=(14, 8)) 

for group in df_population_history.columns: 

plt.plot(df_population_history.index, df_population_history[group], 
label=f'Group {group}') plt.xlabel('Year') 

plt.ylabel('Population Count') plt.title('Population Dynamics Over Time') 

plt.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.show() 

# Line plot of total population over time plt.figure(figsize=(14, 8)) 

total_population = df_population_history.sum(axis=1) 

plt.plot(df_population_history.index, total_population, label='Total 
Population', color='black') plt.xlabel('Year') 

plt.ylabel('Total Population Count') plt.title('Total Population Dynamics 
Over Time') plt.legend() 

plt.show() 

print(f"Simulation completed in {execution_time} seconds") 

The box plot supports the conclusions drawn from the descriptive 
statistics: 

Systematic growth 

The median and IQR of the population counts increase from Group 0 
to Group 9, confirming the systematic growth observed in the mean 
values. 

High variability 

The presence of outliers and the wide range of the whiskers indicate high 
variability within each group, which aligns with the high standard 
deviations reported. 

No significant differences 

While there are visual differences in the medians and IQRs, the ANOVA 
results suggest that these differences are not statistically significant, likely 
due to the high variability within each group. 

Data distribution 

The box plots provide a clear visual representation of the data 
distribution within each group, showing how the majority of the data 
points are clustered and where the extreme values lie. 

In summary, the box plot graphic provides a visual confirmation of the 
high variability and systematic growth in population counts across groups. 
It also illustrates the central tendency and dispersion of the data, 
highlighting that while there are differences between groups, the high 
variability within groups likely contributes to the lack of statistically 
significant differences in mean population counts (Figure 3). 
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Figure 3) Stability of numbers after a few years and their proportionality 

Explanation of the population dynamics over time graph 

The line plot provides a dynamic view of the population counts for each 
group over a period of 500 years. Here's a detailed explanation of the 
graph and how it supports the conclusions drawn from the descriptive 
statistics, box plots, and histograms: 

Population dynamics: Each line represents the population count of a 
group over time, with different colors indicating different groups. 

The y-axis shows the population count, while the x-axis represents the 
years from 0 to 500. 

Central tendency and variability: The lines fluctuate around their central 
values, reflecting the variability in population counts over time. 

Higher groups (Group 9) have higher population counts on average 
compared to lower groups (Group 0). 

Trends over time: There is no significant long-term trend (upward or 

downward) for any group; instead, the population counts fluctuate 
around a stable mean. 

This stability over time supports the idea that the populations are in a 
dynamic equilibrium, with births and deaths balancing out over the long 
term. 

The variability within each group is evident from the amplitude of the 
fluctuations. 

Groups with higher population counts (e.g., Group 9) show wider 
fluctuations, reflecting greater variability, which corresponds to the high 
standard deviations observed in the descriptive statistics [7]. 

Group comparison: The spacing between the lines of different groups 
indicates the systematic increase in population counts from Group 0 to 
Group 9 (Figure 4). 

Figure 4) Despite the apparent stable and organized graphs of the other graphs, Partial Differential Equations creates quite an open field for studying its 
dynamics 

Despite the fluctuations, the groups maintain their relative positions, 
with higher-numbered groups consistently having higher population 
counts. 

Key insights systematic growth: The graph shows a clear progression in 
population counts from Group 0 to Group 9. This systematic increase 
confirms the initial conditions set for the simulation, where each group's 
starting population increases progressively. 

High variability: The wide fluctuations around the mean population 
counts for each group indicate high variability. This observation aligns 
with the high standard deviations reported in the descriptive statistics. 

Stable population dynamics: The lack of a long-term trend suggests that 

the population counts for each group are stable over time, oscillating 
around a central value. This dynamic equilibrium implies that the factors 
influencing population growth and decline are balanced. 

No significant differences: While the groups show different central 
tendencies, the ANOVA results suggested no statistically significant 
differences between group means. The overlapping variability observed in 
the line plot supports this conclusion, indicating that the differences are 
not significant enough to reject the null hypothesis. 

Consistent patterns: The consistent relative positions of the groups over 
time reflect the systematic differences in initial conditions, with higher 
groups maintaining higher population counts despite the fluctuations. 
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The line plot of population dynamics over time provides a comprehensive 
view of how population counts fluctuate within each group over 500 
years. It supports the conclusions drawn from the descriptive statistics, 
box plots, and histograms: 

Systematic growth: The progression in population counts from Group 0 
to Group 9 confirms the systematic growth observed in the means. 

High variability: The amplitude of fluctuations around the mean 
indicates high variability within each group, consistent with the high 
standard deviations. 

Stable dynamics: The lack of long-term trends and the stable oscillations 
around central values suggest dynamic equilibrium in population counts. 

No significant differences: The overlapping fluctuations support the 
ANOVA results, indicating no statistically significant differences between 
group means. 

Overall, the line plot provides a detailed and dynamic view of population 
changes over time, reinforcing the insights obtained from the other 
statistical analyses and visualizations [8]. 

Explanation of the total population dynamics over time graph 

The graph shows the total population count over a period of 500 years, 
combining the populations of all groups. Here's a detailed explanation of 
the graph and its implications: 

Total population fluctuations: The y-axis represents the total population 
count, while the x-axis represents the years from 0 to 500. 

The line fluctuates significantly around a central value, reflecting the 
combined variability of all groups. 

Central tendency and variability: The total population count fluctuates 
around a central value of approximately 14500. 

There are periods of higher and lower population counts, but no clear 
upward or downward trend, indicating a stable overall population. 

No long-term trends: The lack of a clear trend (either increasing or 
decreasing) over time suggests that the total population is in a dynamic 
equilibrium, with births and deaths balancing each other out over the 
long term. 

High variability: The wide fluctuations indicate high variability in the 
total population count. This is consistent with the high variability 
observed within individual groups. 

The total population count oscillates between roughly 14100 and 14800, 
showing substantial short-term changes. 

Dynamic equilibrium: The graph suggests that the population dynamics 
are stable over time, despite the significant short-term fluctuations. 

The central value around which the population oscillates remains 
relatively constant, indicating that the overall system is balanced. 

Key insights high variability: The significant fluctuations in the total 
population count highlight the high variability in the population 
dynamics. This is consistent with the variability observed within each 
group. 

Stable population: The lack of a long-term trend suggests that the 
population system is stable over time. The total population remains 
around a central value, with no clear evidence of long-term growth or 
decline. 

Dynamic equilibrium: The total population dynamics indicate a state of 
dynamic equilibrium, where the processes contributing to population 
growth (births) and decline (deaths) are balanced. 

Cumulative effect: The fluctuations in the total population count are 
more pronounced than those within individual groups. This is expected, 
as the total population reflects the cumulative effect of the 
variability within all groups. 

CONCLUSION 

The total population dynamics graph provides a comprehensive view of 
how the combined population of all groups changes over time: 

High variability: The significant fluctuations around the central value 
of approximately 14500 reflect the high variability within the system. 
This variability is consistent with the high standard deviations observed 
in the descriptive statistics. 

Stable dynamics: The absence of a long-term trend indicates stable 
population dynamics, with the total population count oscillating around 
a central value. 

Dynamic equilibrium: The stable central value suggests that the overall 
population system is in a state of dynamic equilibrium, where the 
factors influencing population growth and decline are balanced. 

Overall, the graph reinforces the insights obtained from the analysis of 
individual groups and the total population, highlighting the high 
variability and stable dynamics within the population system.

Descriptive statistics 

Group 0 Group 1 Group 2 Group 3 Group 4\ 
count 5.000000 5.000000 5.000000 5.000000 5.000000 

Mean 3602.000000  3604.600000  3597.000000  3610.000000 
3592.600000 

std 5428.997053  5430.830581  5428.947412  5430.522535  
5428.464451 

min 103.000000 105.000000  100.000000  110.000000
98.000000 

25% 261.000000 258.000000  255.000000  265.000000  
250.000000 

50% 1026.000000 1030.000000  1020.000000  
1035.000000  1015.000000 

75% 3645.000000 3650.000000  3640.000000  
3655.000000  3635.000000 

max 12975.000000 12980.000000 12970.000000 
12985.000000 12965.000000 

Group 5 Group 6 Group 7 Group 8 Group 9 

count 5.000000 5.000000 5.000000 5.000000 5.000000 

mean  3602.600000  3604.600000  3602.400000  3599.800000 
3604.400000 

std 5428.464451 5429.262362  5430.200346  
5429.892375  5430.200346 

min 108.000000 107.000000  104.000000  101.000000 
106.000000 

25% 260.000000 262.000000  257.000000  256.000000  
259.000000 

50% 1025.000000 1028.000000  1027.000000  
1024.000000  1029.000000 

75% 3645.000000 3648.000000  3647.000000  
3644.000000  3649.000000 

max 12975.000000 12978.000000 12977.000000 
12974.000000 12979.000000 

95% Confidence Intervals: 

Group 0 Group 1 Group 2 Group 3 \ 

Lower Bound -3138.990187 -3138.666813 -3143.928549 -3132.884323 

Upper Bound 10342.990187 10347.866813 10337.928549 
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10352.884323 

Group 4  Group 5 Group 6 Group 7 \ 

Lower Bound -3147.728875 -3137.728875 -3136.719612 -3140.084273 

Upper Bound 10332.928875 10342.928875 10345.919612 
10344.884273 

Group 8  Group 9 

Lower Bound -3142.301876 -3138.084273 

Upper Bound 10341.901876 10346.884273 

ANOVA Table: 

sum_sq df F PR(>F) C(Group) 1.010000e+03  9.0 0.000004 1.0 

Residual 1.179213e+09 40.0 NaN NaN 

<Figure size 1400x800 with 0 Axes> 
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