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ABSTRACT 

In the field of applied mathematics, fractional calculus is used to contract 
with derivative as well as the integration of any power. Different definitions 
of the fractional derivative have been introduced in the literature. For 
example, these are some important definitions of fractional derivatives, 
Riemann-Liouville derivative, Caputo derivative and conformable derivative. 
Recently the generalization of the conformable derivative has been given 

as M-fractional conformable. Fractional differential equations (FDEs) 
“equations involving fractional derivatives” are employed invarious areas of 
science and engineering and others have widely been interested. That’s why 
they have gained many attractions from many researchers. To acquisition, 
the analytical solutions of the FPDEs are a conspicuous look of scientific 
research. 
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INTRODUCTION 

onsequently, numerous scholars have developed some persuasive 
methods to acquired approximate and exact solutions for these types 

of FPDEs. In this investigation, the truncated M-fractional conformable 
(STO) and (3 + 1)-dimensional KdV-ZK equations are considered. The 
novel method: (m + G’ )-expansion method are utilized to extract the 
exact solutions of the aforesaid model equations. Different definitions of 
fractional derivatives have appeared in the literature. For example, Reimann- 
Liouville [1], Caputo derivative and conformable derivative. Despite these 
two most recent definitions are reported as M-fractional conformable and 
beta derivatives. Many powerful techniques have been reported in the 
literature for finding exact solutions; see for example [2-9]. Fortunately, 

Ablowitz-Ladik lattice system are found [24] etc. 

To find the exact solutions of integrable partial differential equations is 
the most interesting topic. Therefore, we will solve two integrable model 
equations namely space-time fractional Sharma Tasso-Olever (STO) and 
space- time fractional (3+1)-dimensional KdV-ZK equations for a variety 
of solutions with a novel derivative operator by employing (m + G′/G)- 
expansion method: Abundant M-Fractional Exact Solutions for STO and 
(3+1)-Dimensional KdV-ZK Equations via (m + G′/G)-Expansion Method. 

SINE GORDON EXPANSION METHOD 

Consider the sine-Gordon equation [25–45] 

it is possible to establish a traveling wave transformation for a fractional xx  tt   2 sin  (1) 

order PDE which can convert it to a nonlinear ordinary differential 
equation (NODE) that can be easily solved by using a variety of different 

Where Φ = Φ(x, t) and δ is a non-zero real number using the wave transform 

methods. There are many distinct techniques have been applied to gain the 
exact solutons of (STO) and (3 + 1)-dimensional KdV-ZK equations like : 
F-expansion method and Improved - expansion methods are used to obtain 

  (x, t)  u( ),  x vt 

On equation (1) and simplifying the results, we get 

(2) 

the bright, dark 1-soliton and other soliton solutions [10], new extended 
direct algebraic technique is implemented to gain the number of new u,, 

 
 2 

 

1  2
 
sin u  (3) 

type of solutions of the conformable fractional (STO) equation [11], dark 
and bright optical solutions gained by variable Coefficient method [12], 
dispersive exact wave solutions are observed by modified simplest equation 
method [13], different optical solutions of the (STO) equation are achieved 

Where u = u(ξ) ,ξ and ν are the amplitude and speed of travelling wave. 
Integrating Eq.( 3) and simplifying it, one 

can get 
by applying the extended trial method [14], extended sinh-Gordon equation 
expansion scheme has utilized to Obtain different types of optical solutions 
of STO equation [15], extended auxiliary equation scheme is applied to gain 
the dispersive optical wave solutions of time-fractional (SH) equation along 

2 

(( )')2  sin ( )  c 
2 1  2 2 

Where c is the constant of integration. Suppose 

(4) 

power law non-linearity as well as Kerr Law non-linearity [16], undetermined 
coefficient method is implemented to gain the distinct kinds of dispersive 
exact solutions in the presence of several perturbation terms are achieved 
[17], with the use of tanh- coth integration algorithm dispersive solutions in 
optical nanofibers are obtained with constraint conditions [18], by using the 

u 
    

 2   

  2 

2 1  2
 

,   

and putting them into eqn.(4), the result is 
 

 

 
(5) 

Sine-Cosine function method, different exact solutions are obtained [19], 
Sech, Tanh and Csch function techniques are utilized to gain the optical 
solutions of (STO) equation along Kerr law non-linearity [20]. 

There are many applications of the Sine-Gordon expansion method and (m 
+ G′/G) -expansion method. For instance, with the use of Sine Gordon- 

Taking c=0 and 1, the solution of Eq(5),becomes 

 '   sin   

Using the separation method, Eq.(6) possesses the solution as follows: 
2 pe





(6) 

expansion scheme,distinct kinds of solutions of the non-linear Time- 
fractional Biological Population equation and the Cahn- Hilliard model have 
been obtained in [21], hyperbolic and trigonometric Functions solutions to 

sin    




p2e2  1 
| p  1  sech  

p2e  1 

(7) 

the non-linear reaction diffusion equation have achieved [22] etc. Similarly, 
(m + G′/G)-expansion method has been utilized to solve the Pochhammer- 

cos    cos    




p2e2  1 
| p  1  tanh   (8) 

Chree equations for bell-shaped, kink-shaped and periodic type solutions of 
with the help of this method [23], discrete and periodic type solutions of the 

Where P is the constant of integral. These two significant solutions achieve 
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tanh( )sech( 
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1  1 1     1 1 1 
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the definition of the SGEM to get the solution of the NPDE of the form 

P(,x,t,tt,xx,xt, ......... )  0 

 
 
(9) 

case 06 

A  0, A 
 
 µ, B  iµ, l  µ2 

 
Now, we consider 
u    tanhi1 B sech    A tanh    A 

 

 
(10) 

0 1 1 

 

case 07 
µ iµ 

 
  

 
 
µ2 

 
 

(29) 

  i i  0 

A0  0, A1  , B1  
, l  (30) 

i 1 

Now, due to equation 7 and equation 8, equation 10 can be rewritten as 
follows: 

 
case 08 

2 2 4 

n 
i 1 

(11) A  0, A  
µ 

, B  0, l  4µ2 
 

 

(31) 

u    cos 
i 1 

Bi sin    Ai  cos    A0 0 1 
2 

1 

case 09 
The value of n is obtained by balancing the highest power of nonlinear term 
and the highest derivative appearing in 

the transformed NODE. 

APPLICATIONS THE SPACE-TIME FRACTIONAL STO EQUATION 

Consider the space-time fractional order STO equation 

A  0, A  
µ 

, B  0, l  4µ2 
0 1 

2 
1 

Solution1 (corresponding to case 01) (Figure 1) 

U ( )  A  
1 
 

 (  1) 
(x  lt )) 

  

 
(32) 

Du  x, t   3 D  u  x, t 
2  

 3u2  x, t  D  u  x, t 
0 2 

1  (  1) 
 

  

(33) 

t x x 

3u  x, t  D2 u  x, t   D3 u  x, t   0, t  , 0   ,   1 

(12)     ((i)sech( 
2 

(x  lt )) 

Using the transformation 
Solution2 (corresponding to case 02) 
U ( )  A  

1 
 tanh(

 (  1) 
(x


  lt


 ))  

1 
(i)sech(

 (  1) 
(x


  lt


 )) (34) 

 
    

u  x,t   U     
   1 

µx   lt  (13) 0
  2  2 

 Solution3 (corresponding to case 03) 

12 can be changed into an ODE equation U ( )  A   
 (  1) 

(x  lt ))  (35) 

lµu
'
  3µ

2
 u '

 
2  

 3 µU 
2
U 

'
  3µ

2
UU 

''
  µ

3
U 

'''
  0 

 

(14) 
0 tanh( 




Where U '  
dU

 
 

Solution4 (corresponding to case 04) (Figures 2-10) 

 (  1) 

d U ( )   tanh( 

 (x  lt )) (36) 

We get M = 1 as a result of balancing terms U 2U′ and U’’’ in 14 the solution 
can therefore, expressed as 

Solution5 (corresponding to case 05) 

u    A0  B1sech    A1tanh  

Where A0, A1, B1 are constant to be computed. 

(15) U ( )   
 (  1) 

(x

  lt


 ))  (i 

 (  1) 
(x


  lt


 )) 

 
Solution6 (corresponding to case 06) 

(37) 

Description of Sine-Gordon Expansion method [17], will yield the following U ( )  
 (  1) 

(x

  lt


 ))  (i

 (  1) 
(x


  lt


 )) 

system of algebraic equations 

3A Bµ
2
  6A A Bµ  0 

12A A Bµ  6A Bµ
2
  0 

9A B
2 µ  6A µ3

  9A
2 µ2

  3A
3 µ  9B

2 µ2
  0 

—2(9A B2µ  6Aµ3  9A2µ2  3A3µ  9B2µ2 ) 

12A B2µ  8Aµ3  12A2µ2  3A3µ  3A2 Aµ  Alµ  12B2µ2  0 

6 A B2µ  6 A Aµ2  6 A A2µ  0 

15A Bµ2   3A2Bµ  6 A2Bµ  5Bµ3  3B3µ  B lµ  0 

 

(16) 
 

(17) 

 

(18) 

 
(19) 

 
(20) 

 

(21) 

tanh( 




0.4 

 
 

0.3 

 

 

 

 

0.1 

 
 

0.0 

)sech( 

 (38) 

6 A B 2µ  6 A Aµ2  6 A A2µ  0 (22) -10 -5 0 5 10 

X 

18A Bµ2  9 A2Bµ  6Bµ3  3B3µ  0 

case 01 

(23) 
Figure 1: Solution of (33) κ = 0.6, µ = 0.5, β = 2, A = 0.05. 

A  
µ 

, B   
iµ 

, l  
1 
 (12 A2  µ2 ) 

   

 
(24) 0.5 

1 
2 

1 
2 4 

0 

case 02 
0.4 

A  
µ 

, B   
iµ 

, l  
1 
 (12 A

2
  µ

2
 ) 

   

 
(25) 

1 
2 

1 
2 4 

0 

case 03 

A  µ, B  0, l   (3A2  µ2 ) (26)  
0.1 

1 1 0 

case 04 

A  0, A  µ, B  0, l  µ2 

case 05 

(27) 
0.0 

-10 -5 0 5 10 

x 

A  0, A  µ, B  iµ, l  µ2 (28) Figure 2:  Solution of (33) κ = 0.6, µ = 0.5, β = 2, A = 0.05. 
0 1 1 0 
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0 
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0 

0 

0 

tanh( )sech( 

0 

0.20 

 
0.15 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Solution of (33) κ = 0.6, µ = 0.5, β = 2, A0 = 0.05. 
 

Figure 4: Solution of (33) κ = 0.6, µ = 0.5, β = 2, A0 = 0.05. 
 

Figure 5: Solution of (33) κ = 0.6, µ = 0.5, β = 2, A = 0.05 
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Figure 7: Solution of (34) when κ = 0.6, µ = 0.5, β = 2, A = 0.05. 
 

Figure 8: Solution of (34) when κ = 0.6, µ = 0.5, β = 2, A = 0.05. 

 

Figure 9: Solution of (34) when κ = 0.6, µ = 0.5, β = 2, A = 0.05. 
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Figure 10: Solution of (41) κ = 0.6, µ = 0.5, β = 2, A = 0.05. 

 

Solution7 (corresponding to case 07) 

U ( )  
1 
 

 (  1) 
(x  lt ))  

1 
(i 

 (  1) 
(x  lt )) (39) 

    

2  2 

Figure 6: Solution of (34) when κ = 0.6, µ = 0.5, β = 2, A = 0.05. Solution8 (corresponding to case 08) 
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6 4c2  4c  1 

6 4c
2
  4c  1 

0 

1 

2 2 2 2 

1 2 0    2 1 2 2 2 2 

8(2c  1)     (54) 

      5(2c  1)  

      5(2c  1)  



 
U ( )  

1 
 tanh(

 (  1) 
(x


  lt


 )) 

1 
(i)sech(

 (  1) 
(x


  lt


 )) (40) 

 
    

 U ( )  (2
 (  1) 

(x  lt )) 
 

 

 
(41) 

2  2  ) tanh( 



Solution9 (corresponding to case 09) (Figures 11-14) 

 

0.30 

SPACE-TIME FRACTIONAL KDV-ZK EQUATION BY SINE- 
GORDON EXPANSION METHOD 

Consider the space-time fractional Kdv-ZK equation [19] 
 

0.25 D

u  auu   u     c u  u   0, t , 0    1 (42) 

t x xxx yyx zzx 

And the transformation 

u  x, y, z, t   U      x  y  z   
   1 

t


(43) 

 

0.10 Where  is nonzero constant, which on substituting in 42 give us the 
following ODE 

0.05 

 
0.00 

-10 

 

 

 
-5 0 5 10 

x 

U ' aUU ' 1  2cU '''  0 

The trial solutions of (44) can be expressed as 

U   tanh  A2tanh   B2sech   A1tanh   A0 

(44) 

Figure 11: Solution of (41) κ = 0.6, µ = 0.5, β = 2, A = 0.05. 
B1sech UsingEqs ??intoEqs 44theAlgebraicequationscanbewrittenas 

 A0 

 A2 

aA0 A1  3aA2 A1  4aB1B2  16 A1c  A1  8A1  0 

3aA2 B1  3aA1B2  12B1c  6B1  0 

aA2  2aA2  2aA A  aB2  3aB2  80 A c  2 A   40 A  0 

4aA2 B2  48B2c  24B2  0 

3aA2A1  3aB1B2  12 A1c  6 A1  0 

2aA2  2aB2  48A c  24 A  0 

case 01 

 

 

 

 
(45) 

(46) 

(47) 

(48) 

 
(49) 

(50) 

 
Figure 12: Solution of (41) κ = 0.6, µ = 0.5, β = 2, A = 0.05. A  

16c    8 
, A   0, B  0, A   

122c  1 
, B  0 

 
(51) 

0 0 
a
 

case 02 

1 1 2 
a 

2 

A0 
10c    5 

a 
, A1  0, B1  0, A2  

62c  1
a 

, B2   
a
 (52) 

case 03 

10c    5 
 

 

 
62c  1







(53) 

A0  
a
 

, A1  0, B1  0, A2  

a 
, B2  

a
 

Solution corresponding to case 01 

tanh( x  y  z   
 (  1) 

t

 ) ((12(2c + 1)) tanh((x + y + z)  

 (  1) 
t




U        
a a 

Solution corresponding to case 02 

U    tanh( x  y  z   
 (  1) 

t

 ) 



Figure 13: Solution of (41) κ = 0.6, µ = 0.5, β = 2, A = 0.05. 
 

    
(6(2c  1))tanh( x  y  z   

 (  1) 
t


 )    (6   (2c  1)

2
 )sec h( x  y  z   

 (  1) 
t


 ) 

    

(55) 
 

  
 

a 



Solution corresponding to case 03 

U    tanh( x  y  z   
 (  1) 

t
 

) 


 
(6 (2c  1)

2 
)sec h( x  y  z   

 (  1) 
t

 
) (6(2c  1))tanh( x  y  z   

 (  1) 
t

 
) 

     




(56) 

 
  

 
a 

 

 

 

 

 

 

 

 

 
 

Figure 14: Solution of (41) κ = 0.6, µ = 0.5, β = 2, A0 = 0.05. 

 
 

CONCLUSION 

By applying a complex wave transformation, we have be successful to obtain 
the solitons of the metamaterials with anti-cubic law of non-linearity. We 
have discussed the optical soliton solutions, along with some constrained 
conditions on parameters, of the metamaterials with anti-cubic law of non- 
linearity via the modi_ed tanh expansion method. Many new optical solitary 
and periodic solitary wave solutions have been retrieved with the above afore 
mentioned integration scheme. These solutions are thus very encouraging to 
carry out future studies in this area. 
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