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ABSTRACT

A model system of ordinary differential equations describing cyanobacteria’s 
circadian rhythm by use of a binary digit of memory induced by multiple 
covalent modification in a cell level is considered. It is mathematically 
rigorously proved that this system possesses bifurcation structure of hysteresis 

type in 1-site model. We apply it to the cyanobacterial circadian rhythm to 
make comparisons between some important biochemical experimental 
results and our simulations. These show very good agreement to elucidate 
theoretically fine skeleton structure with memory reinforcement effect in cell 
level.
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LIfe can be considered to be a complex, but delicate, sensitive, and 
efficient system of organism obtaining high reproducibility and high 

evolvability in order to grow up, to undergo metabolic change, to react 
to stimulation, to control its feature, and so forth. For embodying these 
purposes, it is important to memorize and to communicate information on 
the past about themselves as precisely as possible. An organism can survive 
more stably, if the memorization is more correctly and more steadily, and if 
the communication is more rapidly. It is considered that these characters 
must be realized by a combination of some biochemical reactions. Especially, 
it is important how a strage element is constructed in a cell. In this paper we 
propose a kind of standard structure of mathematical model constructing a 
binary digit of storage element in a cell by use of covalent modifications and 
analyse it to elucidate its characteristic and important properties.

 We consider a simple two-state ( S  and T ) model for receptor proteins. 
This is based on and is modified the model a little in the classical work 
of Professors S. Asakura and H. Honda (1), where they have originally 
considered about the problem of temporary reaction and postadaptation 
process in a cell. T stands for a state which has accepted attractants and is 
likely to take a convalent modifier, and T  stands for the opposite state. S  
receives convalent modifiers one by one in a definite order, while S releases 
them in the reverse order. There are n possibly modifying sites receiving 
convalent modifiers in a receptor protein. Here we assume that a very rapid 
equilibrium of S  and T  is realized according to the mass-action law. We 
change some of important parameters’ directions to get a kind of hysterically

switching structure of steady states, which is a foundation on the desirable 
storage element. In fact, the receptor protein constructs a binary digit in 
such a way that a state taking more convalent modifiers than a threshold 
number is regarded as \1”, the inverse state as \0”. In order to realize it, 
there must be a kind of bistability and hysterically switching mechanism of 
the system. In order to get this desirable nature, we adjust paramerers in the 
system in which the equilibrium between S and T goes to S side more, when 
the receptor protein has more convalent modifiers, and vice versa. This can 
make a state changing hysterically according to quantity of attractants, and as 
a result, it can make a digitally switching function robustly.

One of our important and interesting points is a correlation between the 
number of the possibly modifying sites and a kind of stability of the storage 
element. We therefore investigate how the width of hysteresis range varies, 
as the number of the sites becomes larger. The result is that the wider the 
hysteresis range is, the bigger the number is. Thus it is considered that the 
existence of a lot of sites contributes the stability of the storage element. 

In order to verify usefulness of this fact more concretely, for example, later 
in § 3, we apply this model (2) to the phosphorylation–dephosphorylation 
circadian rhythm of clock proteins of cyanobacteria. Cyanobacteria are among 
the simplest organisms that show circadian rhythm. As this model is coupled 
with equations of attractants and repellents adequately as in Figures 1 and 
2 and as time constant moves appropriately, the system undergoes Hopf 
bifurcation to get a time periodic solution, and moreover, the periodic 
solution survives more robustly, as the number of sites is larger. In a 
consequence, we elucidate a piece of significant meaning

of existence of a lot of sites in the receptor protein. In fact, in the case 
of circadian rhythm of cyanobacteria (See for the details in (3), and (4)), a 
receptor protein monomer has two sites and it usually composes a hexamer, 
so that there are 12 sites per a hexamer of recepter protein. It seems that 
there is slightly many modification sites, but this contributes a stable 
oscillation daily. In our study, we ensure this fact by use of both deteministic 
and stochastic ways of simulations here. These two ways are not conflict 
with each other, but rather, these work to complement to each other. In 
fact, generally speaking, there may be fewer genes, proteins, and molecular 
than we can discuss about some qualitative and quantitative properties in a 
cell. In the case, it seems that we can hardly apply the model of differential 
equations to the interesting object. But in this paper, we ensure that the 
system preserves the hystrecally switching structure and robustness of time-
periodical behavior of solutions even in the corresponding model system of 
stochastic way. Moreover, we compute the average and variance of rotation 
number of the time-periodical solutions of the stochastic model to verify the 
advantage of a lot of site numbers.

Structure of a binary digit of memory in a cell

It is important how a binary digit of memory is realized in a cell, because 

Figure 1) The simple two-state model
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a strange element must be steady and robust. In this section we propose a 
simple structure where the binary digit is constructed cleverly, and make an 
analysis of it. We are especially interested in correlation between the total 
site number and the steadiness of the binary digit. Moreover, we examine the 
robustness by changing several parameters in the model system.

Model equations

The basic assumptions are the following:

The receptor protein converges very rapidly to equilibrium between two 
configulations ( S andT ).

S stands for a state which has accepted attractants and receives covalent 
modifiers one by one in a definite order. T stands for the opposite.

The equilibrium shifts towards the S  form as the number of covalent 
modifiers is increasing. The total sites of the receptor protein is n. The total 
quantity of the receptor protein denotes totalC , and

0
( )

n

total i i
i

C S T
=

= +∑                      {1}

We illustrate our model in the following:

The total quantity of the attractant protein is denoted totalA , and A
represents a density of attractants and moreover, a part of the attractants is 
trapping in '

iT . It is therefore satisfies that
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When we solve {2} and {4} about A , we have
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As a result, the model equation is the following:
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Here, i=1,2,3,…,n, and α
i
, α

i
, k

i
, λ

i
, λ

i 
are positive constants. It is easy to 

understand that the quantity of the totalC is preserved. In fact, clearly we 

understand that 0
( ( )) 0n

i ii

d S T
dt =

+ =∑ by summing up all the equations of 

the system of equations {6}.

Mathematically rigorous analysis for 1-site model (n = 1)

If n=1, λ
0
=λ

1
=k

0
=k

1
=α

0
 =β

0
=1.0, and γ

1
=qγ

0
, then the system is                 {7}

where the constants satisfy

0 1 0 1 0 1, (1 )total totalC S S T T A A T T= + + + = + +

and where q>0 is the switching real parameter between two states. We can 
analyse it mathematically rigorous manner to get a theorem. The following 
theorem means that, if q is a moderate value, then the stationary problem of 
the system has a unique solution, but if q is a extreme big or small value, then 
the system has a hysteresis bifurcation structure in the stationary problem in 
the typical case.

Theorem 2.1: If 0 1.0total totalA C γ= = = , then there are two real numbers 
* *
1 20 q q< < such that, if 

* *
1 2q q q< <  then the stationary problem of the 

system {7} has a unique solution, but

either *
1q q< or *

2q q< , then it has three stationary solutions.

Proof: We use a linear transformation:
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and get the transformed stationary problem:
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And

1(1 )total totalA A C U= + −
Therefore, we get the following, as U

1
’s equation:

3 2
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where the positive parameters are defined by

0 0 0 0 0(1 ), (1 2 ) 2 (1 )(1 )total totalH q G A q q Cγ γ γ γ γ= + = + + + +

2
0 0 0 0(1 )(1 ) {(1 2 )(1 ) (1 ) )},total total total total totalK q C A q C C q Aγ γ γ γ= + + + + + + + +

0{(1 )(1 ) }total total total totalL A C q C Aγ= + + +
X and Y are different solutions of the above U

1
’s equation, and we see

H(X2+XY+Y2)–G(X+Y)+K=0.

Therefore the existence of X and Y are dependent upon the parameters’ 
value. Moreover, we can decide the number of the stationary solutions more 
precisely, if totalA ,

totalC , γ
0
 are adequately given.

Now we use the conditon: 0 1.0total totalA C γ= = = , then

H=2q,G=10q+1,K=13q+4,L=2q+3.

We define the function y=f(x) by

f(x)=Hx3–Gx2+Kx–L,

and we can investigate to decide the positions of the roots of the equation 
f(x)=0 by use of primitive method (for instance, the positions of the extremal 
points are made determined, and the sign of the extremal value are also 
determined, and so forth), although the way is slightly long and complicated, 
but with simple idea. Then we obtain conclusion of the theorem.

Remark: Here we have shown the theorem in very special parameters, but 
in a slightly wider parameters’ area, the same kind of theorem holds actually. 
That fact can be ensured directly, although it is the same essentially as the 
above. Moreover, as the system of equations

has a kind of covariance under some change of variables, it can be verified 
by this covariance, too.

Analysis

In previous subsection, we have gotten the rigorous theorem where we can 
see the system possessing hysteresis bifurcation structure in 1 site case. In 
multiple covalent modification sites case, we do not have the similar rigorous 
theorem, but numerical simulations reveal such a structure even in multiple 
site cases. Moreover, we see the width of hysteresis area be wider and wider, 
as the site number is bigger and bigger. This nature is very much related to 
memory reinforcement. For this purpose, we prepare some notations in the 



 J Pur Appl Math Vol 2 No 1 April 2018 7

Standard model of a binary digit of memory with multiple covalent modifications in a cell 

following:

Degree of covalent modification, P, is defined by

1
( )

n

i i
i

P i S T
=

=∑                                          {10}

which means how many covalent modifiers the receptor protein totally 
possesses. How does P varies as the total attractants change? We investigate 

P’s behavior according to change of totalA  in {5}. Initial conditions of {6} 

are 
0 1.0T = , 0.0iT = , and 0.0jS =  (i=1,2,3,…, and j=0,1,2,…,n) at first. 

We increase the value of totalA  from 0.01 to 10.0 step by step as a width 
of step is 0.01, and we plot the value of P after enough time goes by. Then 
an each initial state is successively made the final state just in the previous 
simulation. Inversely, we decrease the value of totalA  from 10.0 to 0.01 in 
the opposite manner, and plot it in the same figure. We repeat the same kind 
of numerical experiment in each possibly modifying site number. Moreover, 
we exactly solve the stationary problem of {6} in another way, and we make 
an infinitesimal stability analysis for each stationary solution. See Figures 
2-5, and we see a bistable region existing and hysteresis occuring when the 
site number is bigger than two. In the figures, curves outside bistable region 
stand for stable branches of stationary solution, and a curve inside bistable 
region stands for unstable branch. The stable branches overlap completely 
with the final states in solving the time evolution equation, but the unstable 
branch goes inversely up (or down) the interior of in the bistable region, 
although at the end points the final states are jumping up (or down) to the 
nearest stable states in the same parameters. These are not overlapped with 
each other at all.

Circadian rhythm of cyanobacteria

In this section we consider the mathematical model of circadian rhythm 
of cyanobacteria by use of the model of a binary digit of strage element 
constructed and analized in the previous section. Before presenting our 
model, we briefly explain the circadian rhythm of cyanobacteria and the 
recent development.

The circadian rhythm of cyanobacteria is discovered in 1986 by Prof. s 
Kondo’s and Iwasaki’s (4-7) research group in Nagoya University. It is the 
most primitive life of organism obtaining circadian rhythm known so far. 
The clock genes (kaiA, kaiB, kaiC) and proteins (KaiA, KaiB,

KaiC) have been already determined in (5). Transcription–Translation roop 
had been considered as the core negative feedback roop of the circadian 
rhythm, but recently phosphorylation–dephosphorylation cycle of the clock 
protein, KaiC, continues to oscillate with 24 hours period in the constantly 
dark condition in (3), when all the transcription stop, although. Nowaday, 
at least in the case of cyanobacteria, the core cycle is thought of as this 
phosphorylation–dephosphorylation feedback roop composed of the clock 
proteins, KaiA, KaiB, and KaiC. Here KaiC is a receptor protein, and KaiA 
and KaiB are enzymes and work as attractants and as repellents, respectively. 
The possibly modifying number n is regarded as phosphorylation site of 
KaiC. Usually KaiC constructs hexamer and it has twelve phosphorylation 
sites. But according to T . Nishiwaki et al. (6), there are approximately 7.44 
sites utilized in the average, when the phosphorylation of KaiC’s hexamer 
is maximum. In this section we let n moving from 2 to 12 to compare the 
qualitation properties.

Model equations

The clock protein KaiC is the receptor protein of phosphoric acids, and as it 
conbined with KaiA (which is another clock protein), it is likely to promote 
phosphorylation. The other clock protein KaiB is known as a repellent, 
which operates the complex KaiA–KaiC to let the receptor protein be likely 
to be dephosphorylation. The correlation is illustrated in Figure 6. As we 
consider that the total quantities of the three proteins must be preserved, 
respectively, by writing these as totalA , totalB , and totalC , then we see

'

0 0

0
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n n
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              {11}

According to Figure 6, we present our model equations of A, (AB), and B, 
respectively.

0

1
2 2 21

0

i i
n ki iii i

n
k dT

total dtT
i

dA d m A l B A m A
dt λ

λ
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  = − + −   ∑    
∑               {12}

2 2
( ) { ( )},d AB d l BA m AB
dt

= −                                      {13}

1 2 1 2{ ( ( ) ( ) ( ) }total
dB d l P B AB B m AB m l A B
dt

= − − + − +                {14}

λ
i
, k

i
 (i=0,1,2,…,n), l

j
, m

j
 (j=1,2), d are positive constents. We remark that {6}, 

{10), {11}, {12}, {13}, and {14} are a consistent system of equations, although 
it seems to be surplus, apparently. In fact, we can derive the conservation law 

of totalA  in {11} by use of {12} and {13}

easily. We remark that the right hand side of {12} has the terms dependent 

upon iT or idT
dt , which come from the implicit change of A  because of shift 

of chemical equilibrium according to 'A s and 'B s  varying explictly. These 

terms need for conservation law of totalA  of (8-10). We also list figures 
which means that Figures 7-9 shows bifurcation diagram of hysteresis loop 
and that Figure 10 shows how wider the hysteresis loop area grows, as the site 
number becomes larger, respectively.

Analysis 

In this subsection we solve the system {6), {10}, {11}, {12}, {13}, and {14}, 
numerically. First of all we ensure that it has a time periodic solution shown 
in Figures 7 and 8. These are generated by the corresponding hysteresis roop 
to bifurcations of hysteresis type of Figures 4 and 5.

Figure 2)1-site

Figure 3) 2-site
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Poisson process simulation

In this section we investigate the same system by use of stochastic process. In 
fact, this is important and useful, as each event of the chemical reactions in 
the system should be regarded as one following Poisson process.

But in the case of a lot of site-numbers, it seems that shakes are relatively 
small. To ensure the site-number’s effect, we calculate the rotation number 
in the phase space of the system. The rotation number is defined as how 
many times the corresponding orbit rotates around the proper center point 
in the phase space. We first compare the average value of rotation number of 
Poisson process system with the rotation number of the system of differential 
equations. We moreover compute the variance of the value. By use of these 

value, we see a kind of stability of periodic solution of the system for this 
kind of shakes.

Discussion & Conclusion

We have proposed a standard structure of a binary digit of memory with 
multiple covalent modifications in a cell. This is composed of a receptor 

 Figure 4) 6-site

 Figure 5) 12-site

 Figure 6) Relation of clock proteins

 Figure 7) 6-site

 Figure 8) 12-site

 Figure 9) Hopf bifurcation
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protein, attractants, repellents and covalent modifiers illustrated in Figure 1. 
As it is, the receptor protein operated by attractants becomes a state (say S ) 
which is likely to combine with a covalent modifier, and the one operated by 
repellents becomes a state (say T ) which is likely to release it. The receptor 
protein obtains n possibly modifying sites for covalent modifiers. S –T  
equilibrium is achieved very rapidly, and the equilibrium moves to S side 
more if the receptor protein has covalent modifiers more.

In § 2, we investigate the structure of a binary digit of strage element 
derived from our system of equations. If the possibly modifying site is exactly 
one, then the system does not have hysterical structure of stable stationary 
solution nor have digitally switching function. On the other hand, if the 
possibly modifying site is more than or equal to two, then it obtains both the 
structure and the function. We especially ensure that, if the site number is 
larger and larger, then both the structure and the function is more and more 
robust. We see this by the fact that, if the site number is more and more, 
then width of hysteresis is bigger and bigger. Furthermore, we investigate it 
by changing some parameters parameters of the system to get the relation 
between the site number and the robustness.

In § 3, we apply it to the circadian rhythm of cyanobacteria. The system 
of equations is derived from the known functions of KaiA and KaiB 
experimentally, as seen in {11}, {12}, {13}, and {14}. Especially, we note 
that {12} is more slightly complicated than expected, but this is from the 
considerlation of KaiA’s changing implicitly with shift of chemical equilibria 
in the equations {6) by the active KaiA’s varying explicitly. Interestingly, 
without using this exact formof KaiA’s equation, we can not see solutions 
of the system oscillating. This may sugest that the subtle adjustment of 
the equilibria shift to the KaiA’s changing has an important meaning for 
maintaining the oscillation solution.

Based on the biochemical reactions’ occuring in minutes order, we make 
time-rescaling to ensure that the 24-hour (1440-minutes) oscillation 
solutions exist if the site number is bigger than or equal to two. This fact is 
the first evidence of the contribution of many site numbers for stability of 
oscillation. We have also ensured that the oscillation solution comes from 
Hopf bifurcation by Figure 9.

Next, we investigate the oscillation range in ‘KaiA total’–‘KaiB total’plane to 
get Figure 10. According to this figure, if the site number is larger and larger, 
then the oscillation area is wider and wider. This is the second evidence for 
stability of oscillation. According to Kitayama et al. (8), the appropriate ratio 
of ‘KaiA total’, ‘KaiB total’, and ‘KaiC total’ is 3:9:1, which is computed in 
the number of molecules by use of both the moleculars weight and the mass 
ratio written in (8). If the site number is bigger than six, then the half straight 
line of inclination three (which means the ratio 3:9 of ‘KaiA total’ and ‘KaiB 
total’) is include completely in the oscillation area, and vice versa. This also 
means the advantage of lots of site number.

In Ishiura et al. (5), they have made several biochemical experiments by 
use of mutants of Kai proteins to investigate change of the period of the 
circadian rhythm (9). In the experiments using KaiA1 or KaiA2 mutants, 
they have reported that the period is made longer (33 hours or 30 hours) 
because the phosphorylation rate is smaller than in the wild type case. 
Our numerical simulations tell that surely in the case of KaiB’s total mass 
changing, the period is changed less than in the case of KaiA’s total mass 
changing. Moreover, they have also made a lot of experiments by use of 
KaiC’s mutants to get the result that the period changes from 16 hours to 60 
hours or, in other cases, they obtain that the oscillation does not preserved. 
We also see the period changing qualitatively as long as the oscillations are 
surviving by our simulations. If we regard using KaiC mutants as all the 
KaiA’s and KaiB’s time constants’ or their reaction rates’ changing, then we 
understand why the width of change of the period is it in their experiments 
at least qualitatively.

We make poisson process simulations to see how much the oscillations are 
robust in noisy situations, as real biochemical reactions occur stochastically. 
The result is that the oscillations are very robust, as seen from Figures 11-
16, in various site numbers and the number of molecules, V. Moreover, 
we make a calculation of change of the average values and the variance 
of the rotating number of the orbits in the phase spaces to get Figures 17 
and 18. According to these figures, if V=10, then the average value is quite 
different from the rotation number of the orbit gotten by computations of 
differential equations. As seen in Figures 11, 13 and 15, these cases have too 
few numbers of molecules to preserve the similar oscillations to the original 
differential equations’ one, although, if the site number is twelve, then it 
seems that the difference is comparably little. From V=10 to V=1000, we 
calculate the variance of the rotating numbers, whose result is seen in Figure 

18. If the site number is bigger than six, then the variance value is small 
independent from V ‘s values. This fact supports the advantage of a lot of 
possibly phosphorylating site number’s existence. Moreover, we can see the 
average used site number of a real KaiC–hexamer be 7.44 approximately in 
the paper, Nishiwaki et al. (6), when KaiC–hexamers are phosphorylated 
maximally. Our calculations also explain that comparably many sites are 
utilized actually in circadian rhythm of cyanobacteria, from the viewpoint of 
stability of 24-hours oscillations, very well. We furthurmore note that

 Figure 10) Oscillation range in various sites

  Figure 11) 3-site (10 proteins)

 Figure 12) 3-site(1000 proteinss)
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they reported there are more than 10000 molecules of Kai–proteins on 
a cell of cyanobacteria in Kitayama et al. (8). This fact and our poisson 
process simulations tell us that it is significant to disscuss about the 
qulitative natures by use of properties of the solution-orbits of the system 
of ordinally differential equations. Recently, in Yoda et al. (10), they 
have reported that KaiC’s phosphorylations are shuffled to get averaged 
in a cell. This also supports our disscussions by the system of ordinary 
differential equations.

We eventually summarize our conclusions in the followings:

a) We propose a standard structure in which a binary digit of memory 
is constructed in a cell.

b) We give a rigorous proof of occurrence of hysteresis bifurcation of 
KaiA-KaiC stationary problem in 1-site case (n=1).

c) The robustness of the memory is reinforced more, if the possibly 

 Figure 13) 6-site(10 proteinss)

 Figure 14) 6-site(1000 prpteinss)

 Figure 15) 12-site(10 proteinss)

 Figure 16) 12-site(1000 proteinss)

Figure 17) Average

 Figure 18) Variance
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phosphorylating site numbers are larger.

d) If the site number is bigger than six, then the oscillations are 
comparably more stable even in fewer molecules.

e) Several biochemically experimental results about this circadian 
rhythm of cyanobacteria are comprehensible partially by our theory.
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