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ABSTRACT

 We study variation of patterns formed by multi-pulse laser-matter interactions 
when the number N of pulses is increased. Variation of N causes formation of 
vortex filament bundles, thick filaments, ribbons, and tubular-ribbons. Their 
straight and the angular bistable coiling are caused by a double-valley twisting 

potential emerging from the Landau-Ginzburg twisting potential. In addition, 
such a coiling undergoes a conformational change brought by propagation 
of a Davidov’s-like soliton. These structures called “complexes” become 
interconnected into a network on a 2D lattice. Further increase of N induces 
a 3D supercomplex network. For N greater than a certain critical value, the 
organizational pattern breaks down into simpler structures.

Key Words: Laser-matter interactions; Nonlinear fluid flow; Vortex filaments; 
Vortex ribbon; Ribbon-helicoid; Tubular-ribbon helicoid; screw helicoid; Bistable 
coiling; Complex network 

INTRODUCTION

Generation of coherent filamentary and ribbon structures with space-
time localization of characteristic physical properties is a general 

phenomenon in dynamical systems in accelerated flow environments (1,2). 
The appearance of such coherent structures spans from atomic to nano-and 
micro-scales, and extends up to astrophysical-scale as a result of nonlinear 
dynamics (2,3). Examples are vortex filaments and ribbons in Bose–Einstein 
condensates, superconductors and super fluids (4-6), the magnetic flux tubes 
and cosmic strings (2,7), and also vortex filaments and ribbons in the shear 
layers on condensed matter surface generated by laser-matter interaction 
(LMI) (8-11). Filamentary and ribbon structures exhibit, in some cases, coiling 
and supercoiling (12,13), and, in other cases, knotted (14). Coiling and 
bistable coiling of filaments and ribbons which generate helices on metals, 
semiconductors and piezoelectric materials are important for application in 
optics and opto-electronics etc. in the nanotechnology evolution. Depending 
on the conditions, a diversity of structural conformations are organized, 
which ranges from random to complex (architecture) patterns as observed 
on silicon (15) and on the semiconducting oxides of Zn, Sn, In, Cd, and 
Ga (16,17). Very complex organization of ZnO ribbon coils (18), NbSe

2
 

ribbons (19), TiO
2
 ribbon coils (20) and carbon micro-and nano-coils (21-

24), represent modern research topics in the material science.

Regarding LMI, the question is whether filaments and ribbons generated 
on the surface shear-layer form coils, bistable coils and helices, and whether 
these structures may eventually be organized into specific patterns. The 
study is based on the fact that vortex-filament arrays embedded in structure 
less background fluid are evolved by irradiating a few pulses. Continuation 
of irradiating pulses causes the onset of inhomogeneous turbulence and 
interaction of the filament array with localized strain fields. The strain fields 
can be (quasi-)static or oscillatory, whereby torsional and twisting filamentary 
structures appear at scales ranging from nanometers, typically tens or 
hundreds of microns to millimeter scale. With increasing N, the filaments 
are collected into bundles, thick filaments, ribbons and tubular ribbons. Our 
hypothesis was that their interaction with localized strain fields gives rise to 
patterns, with its complexity being controlled by the number N of pulses and 
the density of vortex filament array. To test the hypothesis, the comparative 
study is performed on two kinds of arrays of vortex filaments, the low-
density and on the high-density filament arrays. We show that interaction of 
filaments and ribbons in these two arrays with localized strain fields generates 
helicoids, bistable-coiled filament helicoids, ribbons and tubular-ribbon 

helicoids. These structures develop patterns ranging from a simple random 
pattern (in the low density array) to the layered interconnected supercomplex 
network formed in a multi-stage organizational process (in the high density 
array). Formation of patterns and their variation in these arrays was studied as 
function of the number of pulses N. We follow the organizational process in 
which bundles, thick-filaments, ribbons, and tubular-ribbons, with increase 
of N, become transformed into coiled, helically coiled, bistable coiled 
filaments and ribbon-helicoids structures. These structures, which may be 
termed as complexes (in the high density array) become interconnected and 
organized into a network. In a usual sense, a network represents a stable 
association which exhibits some organizational regularity on the lattice, or 
the organizational concept, and may be architecture of many «complexes» 
as building blocks. Such organization (architecture) of filaments and 
ribbons generated, depending on some external control parameter, by the 
localized (sub-) micron static and dynamic fields (domains) as the interaction 
environment is of common occurrence of physical (25), chemical and 
biological (26) systems and cover research topics in various scientific areas. 
Among them are static domains of the electric field (defects in crystals) 
which trap filaments and ribbons of magnetic flux in superconductors (25). 
Domains of the baroclinic field trap the filaments of material growing in 
the vaporization chamber like silicon and carbon nanotubes, depending 
on the frequency of repetitive forcing of some external agent. However, 
dynamic domains interact with metal wires, belts and nanotubes of Si and 
Ge (15) in a reaction environment to produce their coiling and bistable 
coiling. Well known examples are the twisting domains that form carbon 
nanocoils by chemical vapor deposition (CVD) in the catalytic pyrolysis of 
acetylene, depending on the electromagnetic wave emitted from the heater 
(20,22,27,28). Coiling-formed carbon tubes in 2D and 3D with changing-
chirality, zig-zag-formed carbon nano-fibers as well as ropes were obtained by 
using localized catalyst particles in a reaction environment (23). The change 
of the coiling-chirality during the process of chemical reaction was mainly 
caused by the gradual variation in chemical composition present on the 
surface of the catalyst grains (localized fields). This list can be completed by 
localized biochemical fields in biopolymer solutions connected with the ionic 
electric field that causes coiling or bistable coiling of the organic polymers 
(29-31). Common to all systems is that coiled and bistable coiled filaments 
and ribbons, the complexes, tend to become organized into patterns in such 
a way as the complexity level increases with increasing the external control 
parameter. At the critical value of the control parameter, the conformation 
reaches an organizational slimit, accompanied by a catastrophic change of 
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organization into a lower complexity level (11). Similarly, in the multi-pulse 
laser experiments, the strain forces exceed, at the critical of N, the elasticity 
limit of filaments and ribbons, causing disintegration of the supercomplex 
network into structureless chaotic pattern.

OUTLINE OF EXPERIMENT

Small samples of Co-coated steel of 1 × 1 × 0.05 cm were exposed to the 
focused Gaussian beam of XeCl excimer laser (λ=308 nm), of E � 300mJ, and 
of the pulse duration of t ∼ 20ns. Irradiation of the sample perpendicularly 
from above generated a molten surface layer with characteristic gradients 
of pressure and temperature. The multi-pulse interaction was performed at 
the repetition frequency of 2Hz. The vertical thermal gradient ∇T⊥ raises 
the top surface layer to the boiling temperature Tb, while the lower surface 
layer is at the melting temperature, Tm. This causes the formation of the 
shear layer which is accelerated by the Rayleigh-Taylor instability from the 
center to the periphery of the spot. The top layer of low-density and high 
temperature is moving faster than the bottom one. Any vertical perturbation 
of the shear layer, like vertical oscillation, causes the formation of breaking 
waves. When the Reynolds number Re of accelerated fluid reaches the 
critical value of Re ∼ 103, the Kelvin-Helmholtz (KH) instability sets in, 
causing transformation of the breaking wave into the roll up process which 
generates vortex filaments (11).

The vertical oscillation of the accelerated shear layer can be induced by 
parallel micron-and submicron scratches made on otherwise a smooth 
surface of Co-coated steel. The scratched defects promote the KH instability 
with inducing formation of micron-scale vortex rolls. The roll-up process 
is triggered by the scratches extending, say, in the radial directions on the 
target surface. An oscillatory shock perturbs the density interface (shear 
layer) transversally to the radial flow, or the flow from the central to the 
peripheral regions, causing the formation of waves and their roll-up into 
vortex filaments. The perturbation amplitude is equivalent to the height of 
the scratch wall, while the perturbation wave vector is inversely proportional 
to the distance between the scratches. Once formed, vortex filaments enter 
the formation of various structures with increasing number of pulses. The 
oscillatory strain fields cause the transformation of vortex filaments and 
ribbons into “complexes”, organized patterns, the topological complexity 
of which depends on the filament-filament separation distance, and on the 
number of pulses.

In order to cause the formation of even more complex structures, the surface 
scratches of different length and different density were made-in contrast to 
the previous case of parallel equidistant scratches of the same length (11). 
The scratches were also of different depth, varying between the nm to µm 
and to the tens of µm. Thus, the high as well as the low-density scratch 
arrays were formed in various regions of the target surface. Such surface 
patterning caused the formation of a series of the shock waves with different 
wave-vectors, phase, and intensity. Diffraction of the shock wave at the ends 
of short filaments and additional perturbation of the shear layer generate 
inhomogeneous strain field. The collided and reflected shock waves cause 
the formation of a number of circulating and counter-circulating micron-
scale domains with localized shear field characteristics. The interaction of 
filaments and ribbons with these strain fields generates various complex 
structures in different regions of the target.

The structures become organized into permanently frozen patterns due to 
ultrafast cooling immediately after pulse termination, thus making possible 
a posteriori analysis. The frozen surface structures have been studied by the 
Nikon optical microscope and registered by CCD camera. The best pictures 
of the surface structures were obtained by tilting the table of the microscope. 
Only a slight tilting is needed to get the view-angle with the depth of the 
observed object(s). If the tilting angle is too large, the objects become dark 
and actually cannot be observed. The optimization of the view-angle was 
performed for every new sample or analyzed spot by repeated adjustment of 
tilting. Further optimization of the picture is obtained by the variation of 
color which illuminates the sample (by the change of the optical filters), as 
well as by the variation of the illumination intensity.

RESULTS AND DISCUSSION

Characteristics of the interaction space

Regarding the LMI the question is whether the interaction medium can be 
taken as isotropic or not. The polarization presented as a power series in the 
field is (32-34):

P = ε
0
 (Χ(1)E + Χ(2)E

2
 + Χ(3)E

3
 + …) E			                  (1)

Where Χ(1) is the linear electric susceptibility and Χ(2) and Χ(3) are second-and 
third-order nonlinear optical susceptibilities, respectively. The laser power is 
relatively modest, and the E field is low. Since the second order susceptibility 
Χ(2) for condensed matter is of the order of (32):

Χ(2) ∼1.94 x 10-12 m/V, (2) 

and especially for metals Ag, Cu, Al and Ta is of the same or even lower value, 
the higher order effects can be neglected. For simplicity, a scalar formalism 
is kept throughout the text, corresponding to a linearly polarized field in an 
isotropic medium. Thus, the linear refractive index of target (Cobalt layer) 
according to Johnson and Christy (35) for the XeCl laser wavelength (λ 
∼0.308 µm) is: n ∼ 2.1396.

Evolution of primary and secondary coherent structures: The characteristic 
of LMI is that first few laser pulses cause the formation of an array of parallel 
vortex filaments of different length and of variable filament-filament distance 
in the interaction space (Figure 1a). Two arrays of parallel vortex filaments have 
been formed: A low-density array with the filament-filament distance ˄

1
˃˃ σ 

where σ is the filament core thickness (σ 5-7 µm), has been developed in the left-
side region of the target surface. A high-density filament array with the filament-
filament distance ˄

2
 ≲ σ, has been generated in the right-side region. Vortex 

filaments in both arrays represent the primary coherent structures.

In the low density array, the increasing number of pulses causes that filaments 
tend to take position in the minimum of the oscillatory strain field, staying at 
the position ˄

1
˃˃ σ (Figure 1a(i) left).

In the high density array, under oscillatory strain field, the filament-filament 
distance ˄

2
 ≲ σ is practically regarded as zero.

In this isotropic medium, the closely spaced filaments come closer giving rise 
to a 1D array of bundles, of thick filaments, ribbons, and of tubular-ribbons 
as the secondary coherent structures (Figure 1a(ii) right).

Filament bundles: Under oscillatory strain field, filaments start to aggregate 
in the regions of the minimum strain. If lateral (parallel to the surface) and 
vertical (normal) strain field components are comparable, the filaments 
move closer and form a bundle.

Figure 1) 1. Schematic illustration of vortex filament formation in the structure 
less background fluid at the target surface, with increasing number of ulses, N. (a) 
Formation of vortex filament arrays (primary structures) on the scratched surface 
(surface patterning); (i) After few pulses, a low density filament array with the 
filament- filament distance ˄˃˃ σ is formed at the left side and the set of high density 
arrays at the right side. The distance between the arrays is ˄1˃˃ σ while the filament 
– filament distance inside every array is ˄

2
 ≲ σ (σ is the filament core size);(i) By 

increasing N to about N ∼ 10, a low density filament array does not change much 
(left side), while in the high density array, the filaments come close to each other 
forming bundles, thick filaments, ribbons, and tubular ribbons (secondary structures). 
(b) Transition from homogeneous into inhomogeneous turbulence with increasing N 
causes (i) the formation of localized strain fields in the shear layer; (ii) Localized strain 
fields generated inside the array of bundles, thick filaments, and ribbons. Localized 
(quasi-)static field (rose color), and the field of counter circulating fluid.



J Mod Appl Phys Vol 2 No 2 June 2018 3

Supercomplex network of bistable coiled vortex filaments

Thick-filaments: Under subsequent pulses, a bundle of filaments 
experiences growing compression. The compression invites resistance 
to the filament motion and causes their axial merging. The approaching 
filament longitudinally stretches and its cross section narrows. As the 
angular momentum is conserved, the vortex filament spins faster enhancing 
the co-rotation of the same signed filamentary vortices and intensifying 
viscous diffusion. The crucial role in axial merging play the viscous diffusion 
term, a source term due to stretching, but also an advection term with 
variable advection speed. Consequently, the compressed bundle becomes 
transformed into a thick-filament.

Ribbons: If the lateral compression caused by the oscillatory strain is larger 
than the normal one, it induces their axial merging into ribbons. The longer 
axes of flattened filaments are parallel to the surface and lie inside the shear 
layer (11). The stationary strain wave drives the ribbons (formed by N ≳ 10 
pulses) into the regions of minimum compression (between two maxima). 
Once they become close to each other, the vertical component starts to 
increase to form ribbons into the vertical position to the surface (11).

Thus, a 1D array of bundles, of thick filaments, of ribbons and tubular-
ribbons as the secondary structures evolves in the high density filament 
region, as schematically shown in Figure 1a(ii) right.

Evolution of localized strain fields: Another characteristic of LMI is that 
first few laser pulses cause the formation of the strain field on the molten 
surface layer in the interaction space. By increasing the number of pulses, 
the strain field becomes modified and decomposed into localized static and 
dynamic fields (strain domains) (Figure 1b(i) and b(ii)). Localized (quasi-)
static fields have the strain gradient oriented from the circumference towards 
the center, and may cause pinning of filaments and ribbons. The trapping 
potential and 2D projected map of the pinning center (Figure 2a), are similar 
to that of the real point defect.

Besides (quasi-)static strain fields, the dynamic localized fields of fluid 
oscillation, circulation, and counter-circulation are generated by the train 
of laser pulses. The domain of the counter-circulating fluid (vertically 
segmented by the cross sections of the shear layer), shows the sequential 
change of the local vorticity (Figure 2b(i)). Its orthogonal projection onto the 
upper horizontal plane shows a 2D map with subdomains of the left-handed 
(red), and the right-handed circulation (blue) (Figure 2b(ii)). The intensity of 
colored contours changes from the periphery to the center of subdomain and 
represents the strength of the localized field. The corresponding 1D picture 
of these subdomains is a double valley twisting potential (Figure 2b(iii)). In 
the multipulse LMI the vortex filaments as primary coherent structures in 
the low density array interact with localized strain fields giving rise to various 
structures and patterns-different from the structures and patterns generated 
by the interaction of the secondary coherent structures with localized strain 
fields in the high density array.

Low density array

Formation of random pattern of bistable coiled helicoids: In the low 
density array of vortex filaments (Figure 1a left), the interaction of parallel 
vortex filaments as the primary coherent structures with localized strain 
fields for the number of pulses N ≥ 15, leads to the formation a random 
pattern of bistable coiled filaments (Figure  3). Such pattern is the result 
of interaction of individual vortex filaments with a double valley twisting 
potential (Figure 2b). Schematic illustration shows a filament in the vicinity 
of the opposite twisting strain field (Figure 4a), the initiation of bistable 
coiling (Figure 4b) and bistable coiled filament with segments of the left-and 
the right-helicity separated by the inversion point (Figure 4c).

Description of straight and angular bistable coiling with the change of radius 
etc., in the field of laser-matter interactions requires identification of the 
equations and models which are basically nonlinear. Definition of models, 
algorithms and solution of differential equations, numerical simulation by 
different methods is a challenging problem. It was found that an effective 
tool to describe physical phenomena like fluid flow, elasticity.., but also 
biological ones… etc., are fractional partial differential equations (PDEs). 
They are a type of differential equation involving unknown multivariable 
functions and their fractional-integer partial derivatives with respect to those 
variables (36). A great effort is recently done especially in building fractional 
mathematical models for specific phenomena and developing methods 
for solution for PDEs (37,38), including nonlinear fractional KdV-Burgers 
equation for shallow water system (39).

Regarding a thin (shallow) fluid layer generated by LMI and bistable coiling 
of filaments we assume-as the first approach-that the Landau-Ginzburg 

twisting potential [which describes bistable coiling of the elastic bacterial 
filaments from the small scale ∼ 15-25 µm (40) to the very large macroscopic 
botanical filaments ranging from millimeter to centimeter scale (41), can also 
describe bistable coiling of elastic vortex filaments of ∼ 40-80 µm in length 
observed in this experiment. 

Figure 2). Characteristics of localized strain fields. (a) Localized (quasi-)static strain 
field has characteristic of the trapping center and may be represented by the potential 
valley, similar to the pinning center of the real point surface defect. (c) Localized 
field of fluid counter circulation; to the left (red), and to the right side (blue). (i) A 
local shear-layer domain with the fluid counter circulations. (ii) A domain segmented 
by vertical cross- sections showing the local vorticity and the corresponding 2D map 
which is orthogonal projection of the field of counter circulating fluid. (iii) The counter 
circulating field with 2D projected map and with corresponding double-valley twisting 
potential.

Figure 3). Optical micrograph showing a random pattern of straight and angular 
bistable coiled filaments, formed in the low density filament array after N ≳ 15 
pulses.
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Straight bistable coiling: The micrograph in Figure 5a shows straight bistable 
coiled cobalt filament which is free at both ends. The change of the helix 
chirality is caused by the opposite twisting of the filament without external 
constraints. In spite of this, comparison can be made with the bistable 
coiled filament (Figure 5b) of Goriely and Tabor (41,42) which was fixed 
at both ends, and whose chirality was supplied by the external constraint. 
The change in chirality is displayed on a circle (Figure 5c) in the parameter 
space defined by τ (torsion) and (curvature) K. In the case shown in Figure 
5c, τ ranges between 0 and ± 0.15, while K ranges from 0 to ¼ (41,42). The 
straight bistable coiling occurs when the twist front propagates along the 
straight filament (α=1800) between two minima Tw±, of a symmetric twist 
potential V0 (Tw) when ∆Tw=0.

Angular bistable coiling of filaments: Figure 6a(i)-a(iii) show increasing number 
of coils which occurs if vortex filament interacts with localized strain field 
represented by a double valley twisting potential (Figure 6b(i)). The dynamics 
of the filament could be described by the model of Goldstein et al., (40) 
based on the intrinsic curvature and twist of thick filament. In this model, 
angular bistable coiling with angle 00 < α <1800 is caused by the strain tensor 
T acting on an elastic filament. The model is constituted as building block, 
by an orthonormal set of vectors, {e

1
,e

2
,e

3
}, where e

3
 is the tangent vector, e

1
 

points from the centerline to the rod surface along a specific direction, and 
e

2
=e

3
 × e

1
. A segment of the curved filament around a point specified by the 

parameter s is exposed to a strain vector T(s)= (T
1
,T

2
,T

3
), which bends the 

filament, endowing it with curvature. This strain vector shapes the filament 
through the kinematic relation ∂

s
e

i
=T × e

i
, (i=1,2,3), and the curvature K 

satisfies K2=T
1
2+T

2
2, with T

3
 being the twisting angle per unit length. The 

elastic energy of the filament, ℰ[T] is described by the Landau expression (40)

...ij i j ijk i j kA TT B TT T= + +∑ ∑E  		                              (3)

With symmetry conditions imposed on the allowable elastic constants Aij 
and Bijk. Minimizing the elastic energy, (3) with identification T

3
 ≡ Tw 

(twist) gives the helix as a ground state or the minima of the sum of curvature 
and the twist energy. For a thin elastic filament or a rod, (3) simplifies to (40)

2 21 2 wAK CT ds = + ∫E  			                  (4) 

Where A is the bending stiffness and C is torsional rigidity. A helical 
filamentary conformation appears as the ground state if the minima of 
both, the curvature and the twist energy are shifted from zero to intrinsic 
curvatures T

10
 and T

20
, and intrinsic twist Tw0 (40). Then, the simplest thin 

filament model for a bistable helix, featured by curvature and two stable twist 
states, gets the following expression for the Landau-Ginzburg functional for 
the energy in terms of the twist strains (40)

( ) ( ) ( ) ( )2 2 2
1 22 2 s wA T T T V T dsγ = ∆ + ∆ + + ∫E  	                (5)

Figure 6). Angular bistable helical coiling. (a) Optical micrograph showing bistable 
coiling of vortex filament. (α ∼ 350). Optical micrograph showing (i) early phase of 
bistable coiling; (ii) intermediate phase of bistable coiling and (iii) the late phase of 
bistable coiling. (b) Bistable helical coiling along two directions under an angle. (i) 
The asymmetric double-valley potential in the twist variable; (ii) The elementary front 
solution of the twist; (iii) The double helix cores-ponding to Figure 2A (Courtesy of 
R.E. Goldstein; Reprinted with permission Figure 2 from R.E. Goldstein, A. Goriely, 
G. Huber and C.W. Wolgemuth, Phys. Rev. Lett, 84 1631 (2000). Copyright 
(2000) by the American Physical Society.

Figure 7). The process of conformational transition mediated by a non-topological 
soliton. (a) Optical micrograph showing conformational transformation of an 
angularly bistable coiled filament. (b) Magnification and refining of the framed 
segment in Figure 7(a) reveals the helicoid-helicoid conformational transformation. 
(c) Illustration of conformational transition between helicods tentatively based on 
the «toy model» of Caspi and Ben-Jacob (37, 38). (i) The initial helicoid is locally 
metastable along the filament and characterized by one constant curvature value. 
(ii) The NLS non-topological soliton is generated and moves upward along the 
helicoid. (iii) The soliton interacts with the curvature field and causes transition 
to the minimal energy configuration. (iv) The minimal energy configuration is 
characterized by another value of curvature, different from the initial one.

Figure 4). Interaction of vortex filament with localized strain field of counter 
circulating fluid. (a) Vortex filament in the vicinity of counter- circulation fluid is 
exposed to its strain field. (b) The strain field causes bending of filament and the 
beginning of bistable coiling (c). Bistable coiled filament comprises segments with the 
left and the right side helicity separated by the inflection point (C). Schematically. 

Figure 5). Straight bistable helical coiling (α = 1800). (a) Optical micrograph clearly 
shows the inversion point.(b) Sketch of a helix reversal. (c) The optimal solution curves 
in the τ-K plane together with the two optimal helices (circles) obtained for K=¼, Γ 
= ¾. n=1/8. (Courtesy of A. Goriely; Reprinted with permission Figure 2 from A. 
Goriely and M. Tabor, Phys. Rev. Lett, 80 1564 (1998). Copyright (1998) by the 
American Physical Society. 
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Where ∆T
i
=T

i
–T

i
0 (i=1,2) and V(Tw) is a double-well potential (Figure 6b(i)). 

In this case, the twist-gradient coefficient γ controls the width of fronts 
connecting the two states (Figure 6b(ii)). The most intriguing pattern of such 
fronts is a filament comprising two helices of opposite sense connected at 
an angle α, being referred to as a bistable helix, as schematically shown in 
Figure 6b(iii).

The two energy minima of the above functional correspond to the two stable 
twist states of bistable helix. Continuity of the tangents at the junction of the 
two axes determines the «block angle» α to be

( ) ( )1 1tan tanK Kα τ τ− −= + + − − −  		                   (6)

Where K± and τ± are the curvature and torsion of the two helices, respectively 
(40). Consideration of the solutions propagating between the two minima 
Tw± of an asymmetric potential reveals two dominant regimes, the inertial 
and viscous regimes (40). If the inertial regime dominates, the potentials 
«V» are characterized by the relation Tw+ = –Tw– and the front solution 
exists, which propagates along helices of torsion Tw± with traveling speed 
c= (|ΔV|S/2I)1/2, where ΔV is the difference in the two potential minima 
(Figure 6b(i)), S is the cross-sectional area, and I is the twist momentum. The 
angular bistable coiled filaments in Figure 6a(i)-a(iii) comprise two segments 
connected with an angle of α ≲ 350. However, the filament in Figure 6a(iii) 
is not a simple angular bistable-coiled helicoid, but more complex one 
indicating the conformational change of initially formed helix. 

Conformational change of bistable coiled filament: A closer view at the 
bistable coiled helicoids (Figure 6a(iii)) reveals that its left branch consists 
of two helicoids with larger and smaller coiling radii, as is seen from the 
framed area in Figure 7a. These helicoids have coiling axes shifted by ∼ 
35-40 microns from each other (Figure 7b). Such conformational change 
in the helicoidal chain of micron scale vortex filaments in the vibrational 
field resembles behavior of Davidov’s soliton in the quantum vibrational 
field observed on proteins. Assuming proteins as coiled elastic filaments 
(ribbons) the change of their coiling radius due to vibration is similar to the 
behavior of other elastic rods in the vibrational field. It is well known that 
micron-scale vortex filaments and ribbons formed by circulation, behave as 
the elastic objects in the background flow field showing undulations and 
formation of loop solitons (8). Thus, in a broader sense, the “toy model” 
of Caspi and Ben-Jacob (43,44) may be a good tentative approach for 
description of similar behavior of elastic filaments in other fields of science. 
The “toy model” is based on the interaction of some vibration field of 
complex amplitude a with the field of the conformation angle φ of the 
filament. This interaction supplies the conformational field U(a, φ) with an 
energy which overcomes the energy barrier for the chain folding (coiling). 
This correlated and deterministic process dictates a folding pathway to the 
new conformation (44).

Establishing, for the observation by the LMI, the scenario of conformational 
change in the filamentary helicoids as shown in Figure 7b one can assume 
that a localized oscillatory field in the shear layer interacts with the filament 
helicoids, in an analogous manner as the vibrational field in the above 
model. The transition from one helicoidal conformation into the other can 
be described by the nonlinear Schrödinger equation (NLS) for the complex 
amplitude a=a(x,t) expressed in the non-dimensional form, by

2` 2 0xxia a a a+ + =  			    	                (7)

Where a prime and the subscript 
x
 designate the partial derivatives with 

respect to time t and arc wise parameter 
x
, respectively (44). Solitons, as 

localized in non-dispersive system, are stable and can propagate, without 
energy loss or dispersion, to larger distances than wave-packets of linear 
waves. They provide an efficient means, in a single event of the local 
conformational transition, for extracting the energy and for transferring it to 
distant location, meaning that the energy is not dissipated but spent for the 
new helicoidal selforganization (43).

The «toy model» starts from the initial state and the local conformation 
represented by the potential in terms of a scalar variable. The potential 
energy is modeled by an asymmetric φ4 double well potential V(φ),

 V(φ) = ε(φ+ δ)2 (φ2 – 2/3 φδ + 1/3φ2–2) 		                  (8)

Where δ is the asymmetry parameter, ranging from-1 to 1, and ε is a small 
parameter. The two minima are placed at φ = ± 1 (43). The amplitude 
field a(x,t), interacts with the conformational field φ(x,t). The change in 
conformation is realizable when the interaction is specified by a potential 

U(a,φ) = ˄|a|2φ2, with ˄ being a positive parameter. The combined 
potentials (V+U) are made to increase with |a| at the energy minima so as to 
lower the barrier for a folding transition (43). The corresponding free energy 
density functional is

( ) ( )2 4 2* ` 1 2 ` , 0xF ia a a a m V U aφ φ φ= − + + − − =  	                    (9)

Where the asterisk stands for the complex conjugate. The equations derived 
from the variation principle with (9) as the Lagrangian density make feasible 
numerical simulations for the conformational transformation of helicoids 
(43). Tentative interpretation of the conformational transition process may 
be based on the «toy model» of Caspi and Ben-Jacob (Figure 7c(i)-c(iv)). (i). 
The initial helicoidal conformation characterized by constant curvature, is 
locally metastable along the filament; (ii). The NLS non-topological soliton 
is generated and moves in the upward direction along the helicoids; (iii). The 
soliton interacts with the curvature field and causes transition to the minimal 
energy configuration; (iv) The minimum energy (ground) state is featured 
by another value of curvature different from the initial one (43). Thus, the 
micrograph in Figure 7a and 7b can be interpreted as the transition of a 
helicoids from one conformation (in the high energy state) into another one 
(in the low energy state).

High density array

Formation of network pattern of bistable coiled helicoids: In the 
high density array of vortex filaments (Figure 1a right) the interaction of 
secondary coherent structures with localized strain fields for N ≳ 20, leads to 
the formation of bistable coiled thick filament-, ribbon-, and tubular-ribbon-
(-helicoids) called “complexes” and their organization into complex network 
pattern (Figure 8a). Refinement of the micrograph reveals characteristic 
patterns (Figure 8b), while the reconstruction in Figure 8c, reveals that 
filamentary and ribbon helicoids are aligned on a 1D lattice (red lines). By 
increasing N, the “complexes” tend to fill up the space of the lattice cells, 
taking orientation of the coiling axes either at ∼ 450 to the right, or at ∼ 
(-) 450, thus forming a high complexity pattern. Such organization of the 
“complexes” indicates the tendency to fill up the empty space inside the cells 
of 2D lattice and to reduce the energy of the network system. By further 
increase of N, these structures, especially those of larger coiling radius, 
tend to move vertically out of plane and form a 3D organization of double 

Figure 8). Complex pattern of straight and angular bistable coiled filament bundles, 
thick filaments and ribbons, formed on the array of secondary structures. (a) Optical 
micrograph showing complex organization of ribbon helicoids and thick filaments 
bistable coiled into conical helicoids with progressively decreasing coiling radius. (b) 
A refined micrograph of the pattern in Fig.8a reveals that bistable coiled helicoids 
as well as ribbon helicoids, called «complexes», with the coiling axes oriented in 
various directions, are interconnected into a supercomplex network. (c) Schematic 
reconstruction of the supercomplex network reveals that thick filaments and ribbons, 
as well as their «complexes» may be put on 1D lattice indicating the architecture.
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layers, whereby the packing density in the plane is reduced. This indicates 
a tendency to promote an efficient energy dissipation rate and to reach the 
energy minimum via formation of hierarchically more complex organization. 
Such a configuration may be possible only by forming «complexes» out of a 
plane, which causes their stretching within the limit of being elastic. Thus 
3D layered organization of «complexes» vertically stacked one above another 
indicates the architecture of a super-complex network.

In the following sections we shall consider the formation of “complexes” for 
N ≥ 20 and their organization into super-complex network, as well as the 
network breakdown when the number of pulses reach the critical value, Ncr.

Formation of thick-filament bistable coiled conical helicoids: The thick-
filament «complex» in the network Figure 8 is a conical left-handed helicoid 
coiled around an axis tilted to the right (Figure 9a(i)). Such coiling is generated 
by twisting the filament at the one end, while the other end is pinned at 
the point defect (Figure 9a(ii)). The «complex» in (Figure  9a(iii)) shows a 
conical right-handed helicoids coiling around an axis tilted to the left with 
the radius progressively decreasing from R=R

max
 to R ∼ 0. Such a conical 

helicoids is formed by the action of a double valley twisting potential on the 
filament pinned at (quasi-)static strain field (Figure 9a(iv)). Although (quasi-)
static strain fields may be an assembly of virtual point defects, they cause 
pinning of filaments similar to the real defects (11). In more general sense, 
the interaction of topological point defects (whether they are real or virtual), 
with the filament is analogous to the action of the «source» or «sink» which 
generates similar conical trajectory of a charged particle in the magnetic 
monopole, being equivalent to vortex filament embedded in a source or 
sink flow. This effect was experimentally demonstrated by Petitjeans (45) 
by injection of the small dye jets into a fluid (Figure 9b(i)) visualizes angular 
bistable helicoids; the upper coiled segment is conical due to the filament 
pinning at the point defect. The lower segment with the left handed coiling 
has mostly constant radius. These segments, connected under an angle of α  
1200 (Figure 9b(ii)), are generated by strongly asymmetric, twisting double 
valley potential. The reconstruction in Figure 9b(iii) reveals that pinning 
center besides the conical coiling causes also splitting of a thick filament into 
two filaments of the smaller core size (Figure 9b(iv)). 

Formation of isometric vortex ribbon helicoids: The ribbon helicoid 
«complex» in Figure 10a(i) at both ends become thick-filaments, 
schematically shown in Figure 10a(ii) is formed when the local oscillatory 
strain field executes a strong twisting action on the ribbon (12). It resembles 
the isometric spiral ribbon helicoids and may be compared to one in Figure 
10a(iii). The continuum theory for the chiral ribbons by Helfrich and Prost 

(46) is built on the assumption that the ribbon is isometric, i.e., that it does 
not support the elastic strain. A chiral twist can be imparted to isometric 
or non-stretchable (inextensible) ribbons only by winding them over the 
surface of a cylinder (47,48). The helical ribbons in Figure 10a(i) and 10a(ii) 
represent examples of more general problems of conformational instability 
(47-50). The conformational instability depends on the characteristics of the 
ribbon helicoids such as the helical pitch, the torsional rigidity C and the 
elasticity, given an inextensible ribbon of the bending stiffness A and B (50).

The rotation of the crossection of a not stretchable but deformable curve 
that represents the ribbon of the arc length s (0 ≤ s ≤ L, where L is the total 
length of the ribbon), about the centerline is expressed by the twist angle 
α(s). The free energy Ƒ of the ribbon take the form 

( ) ( ),F F x s s dsα=   ∫  			     	              (10)

Where F is the free energy density functional and depends on the position 
vector x(s) and the twist angle (s) (51).

Similarly, the configuration of the centerline curve of ribbon can be described 
by an orthonormal triad of unit vectors {e

1
,e

2
,e

3
}, where e

1
 and e

2
 are oriented 

along the principal axes in the cross-sectional plane of the ribbon and e
3
=dx/

ds is the unit tangent to the centerline curve at the point x specified by s. The 
vectors e

i
 (i=1,2,3) satisfy the generalized Frenet equations,

( ) ( ) ( ),i ijk j kj k
de s ds s e sω= − ∈∑  		            	                (11)

where ε
ijk

 is the completely antisymmetric tensor of third order and ω
j
(s) 

(j=1,2,3) are the generalized torsion parameters. The generalized torsions 
ωj(s) are given, in terms of the curvature K, torsion τ, and the angle α, by

ω
1
 = K cos α, ω

 2 
= K sin αand ω

 3
 = τ + dα/ds, (12)

The free energy Ƒ then has the form

( ) ( ) ( ) ( ), , , sF F x s s s s dsτ α α=   ∫  		                (13)

where α
s
(s) = dα(s)/ds is the twisting angle, per unit length, of the cross 

section along the centerline of the ribbon. The functional F depends on 
both the elasticity of material, specified by elastic constants, and geometrical 
shape of the cross-section. The corresponding free energy density of the 
elastic ribbon is:

Figure 9). Configurations formed by thick filament coiling and bistable coiling with 
progressively decreasing coiling radius. (a) (i) Rendering of the optical micrographs 
reveals details of the conical-helicoids. (ii) Formation of conical-helicoids of a thick 
filament pinned at one end at the (quasi-)static strain field, and exposed to the 
twisting strain field at the opposite end. (iii) Optical micrograph showing a conical 
bitable coiled helicoids. (iv) Formation of such structure occurs under action of a 
double-valley twisting potential on the pinned filament. (b) (i) Rendering of the optical 
micrographs reveals angularly bistable coiled helicoid which is pinned at the left side. 
(ii) Reconstruction reveals bistable coiling of the filament caused by twisting double-
valley potential, and formation of a conical helicoids. (iii) Schematic illustration of 
vortex filament splitting and conical coiling. (iv) Schematic illustration of the filament 
splitting into two thinner filaments, one straight, and another one turned by ∼ˇ900 
to the right at the localized (quasi-)static strain field.

Figure 10). Configurations formed by the ribbon coiling. (a)(i) Rendering of the 
optical micrographs reveals helicoidal coiling of non-isometric ribbon which is 
transformed into thick filaments at both sides. (ii) Schematic illustration of such a 
ribbon helicoids. (iii) Numerically simulated ribbon helicoids with the helical pitch, 
h, as variable parameter (expressed by the angle Φ. Notice, that the ribbon helicoids 
in Figure 10(a) (i) can be identified with the case of Φ =130. (Reprinted with 
permission Figure 3 from S. Zhao, S. Zhang, Z. Yao and I. Zhang, Phys. Rev. E 
74 032801 (2006). Copyright (2006) by the American Physical Society). (b) (i–
iii) Rendering of the optical micrographs reveals tubular-ribbon helicoids, specifically 
the screw helicoids. (iv) Numerical simulation of tubular-ribbon low density coiling. 
(Courtesy of Prof. H. Havlicek, of TU Vienna, from H. Havlicek, “Advanced 
Descriptive Geometry”, http://www.geometrie.tuwien.ac.at/havlicek/ergaenz.html 
(v) The increase in N causes increase in the coiling density and formation of the screw 
helicoids characterized by the coil thickness d, and the pitch, h (h > d). Comparison of 
this structure with (i), (ii) and (iii), indicates that dense coiled tubular-ribbon helicoids 
is the screw helicoids.

http://www.geometrie.tuwien.ac.at/havlicek/ergaenz.html
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F = F(K,τ, α,αs) = (A/2) K2cos α+ (B/2) K2sin α + C(τ+αs – τ
0
)2 	                (14)

where τ0 is the spontaneous torsion (50). We employ as the unit of 
temperature kBT=1, and consequently A, B, and C have dimension of 
length. For an isotropic material, as in the case with an a vortex ribbon, the 
rigidities can be expressed in terms of the shear modules µ, Young’s modulus 
E, and the principal moments of inertia, which depend on the shape of the 
cross section.

For a ribbon helicoids, the rigidity parameters A and C are fixed and one can 
find the pitch angle Φ between two neighboring helical coils for anisotropic 
and isotropic ribbons. Concentrating on the isotropic ribbons, one finds for 
the ratio ( )4 2 1 `C A Eµ σ≈ = +  the pitch angle to be

( ) ( ){ }2 1 2arctan 1 2 2 1 4 1 `λ σ  Φ = + + − +  
 		              (15)

where σ ̀  (-1≤ σ ̀ ≤ ½) is the Poisson’s ratio and λ= τ0/τ. The right side of Eq 
(15) is real only when λ > (5/2)1/2-1, which implies that the isotropic helical 
ribbons with λ < (5/2)1/2-1 are unstable. Typical configurations of helical 
ribbons with the pitch angle 100< Φ ≤ 500, obtained numerically by Zhao 
et al., (50), is illustrated in Figure 10a(iii). Comparison of these simulated 
ribbon helicoids with the helicoids in the micrograph (Figure 10a(i)), 
gives the pitch angle Φ ∼ 130 for the closest agreement. one finds form of 
equation (15) with the parameter Taking λ ∼ 0.6 in the stability range of Φ ∼ 
130, one finds form Eq (15), with the parameter σ`∼ -0.84 >-1. Based on this 
σ value, the ratio of torsional and bending rigidity constants of the ribbon 
is, C/A ∼ 0.32. The measurement of the ribbon in Figure 10a(i) shows that 
its length and width are L ∼ 700 µm, and W ∼ 40 µm, respectively, and thus 
that the aspect ratio, A = L/W ∼ 17.

Formation of non-isometric vortex tubular-ribbon helicoids: The tubular-
ribbons helicoid “complexes” in Figure 10b(i)-b(iii), show significant bending 
of the coiling axis, being indicative of certain degree of elasticity. In contrast 
to the above case, this type of helicoids is able to be created if the ribbon 
is stretchable, but any lateral bending along the ribbon axis is forbidden 
(46,47). The structure is non-isometric spiral tubular-ribbon helicoids with 
geometry restricted to the family of ruled surface helicoids. The tubular-
ribbon helicoids with the low density coiling, and with the high density one 
are shown in Figure 10b(iv) and 10b(v) respectively. The last one is the screw 
helicoid, similar to those in Figure10a(i)-a(iii). Denoting the radius of the 
screw helicoids by R, the coil thickness by d, and the helical pitch by h, 
as shown in Figure 10b(v), the helicoids can be characterized by the ratio 
ℒ=h/d. Measurement on the Figure 10b(i)-b(iii) gives 2R∼50 µm, d ∼18 
µm and h ~28 µm, with ℒ=1.6. For N ≥ 25, the helicoidal pitch h decreases 
while d increases tending to h∼d, or ℒ=1. The ribbon shape in the Figure 
10b(i)-b(iii) can only be generated if the plane of the circle makes helical) 
horizontal motion (orthogonal to the vertical axis of the screw) (51). The 
shape instability of a ribbon transforming it into ribbon-helicoid and into 
tubular–ribbon helicoid is described by a model which treats the helicoid as 
a real surface of finite thickness, elasticity, and stifness.

Reconstruction of the localized strain fields which generate complex network 
pattern of Figure 8, leads us to a simplified representation of Figure 11. The 
bistable coiling fields are represented by 2D maps of a double walley twisting 
potential (red and blue areas), while the pinning centers are marked with 
rose spots. Although randomly distributed, these local strain fields can be 
put on the nodal points of 2D lattice, being indicative of a certain degree 
of regularity in their spatial distribution (Figure 11). Their interaction with 
filaments and ribbons gives rise to a network-pattern of interconnected 
«complexes». With increasing N, complexes show tendency to move in 
the vertical direction out of the plane, and form a layered network which 
resembles the architecture of biopolymers and of the biological systems as 
exemplified by the Colicin E1, a member of proteins comprising angular 
bistable ribbon helicoids organized in a layered structure (31).

Breakdown of network pattern of bistable coiled helicoids: When the 
number of pulses reaches the critical value, Ncr, at which the stretching 
of filaments and ribbons surpasses the elastic limit, the possibility for the 
«complexes» to move out of a plane and establish 3D organization is exhausted, 
the system faces crisis. The crisis occurs at Ncr ≥ 30, causing breakup of 
the super-complex network and of the «complexes» as well. Rather than 
reaching the higher organizational state, the system catastrophically passes 
into a downgraded chaotic pattern (Figure 12a). The image refinement and 
magnification reveals breakdown of vortex-filament helicoid and bistable 
helicoid «complexes» in the form of the «pigtails» (Figure 12b(i)), twisted and 
writhed filaments (Figure 12b(ii)), looking like those numerically simulated 
by Goldstein et al., (52) (Figure 12b(iii)). It also reveals that broken ribbon 

helicoid «complexes» generate small segments of the Scherk surface geometry 
(11). The ribbon width W, somewhat increases while its thickness decreases 
in agreement with the diagram in Figure 8 of (12). 

Breakdown of tubular-ribbon helicoid «complexes» at Ncr ≥ 30, occurs in a 
different way. With increasing N, the coil density increases up to the critical 
point beyond which coils reach a state of overcritical density and merge into 
a «rippled tube» (Figure 12c(i)). However, the diameter of the tubular-ribbon 
helicoid does not change, so that the rippled-tube has the same diameter. 
The change in the coil thickness, d, and of the helical pitch h for the tubular-
ribbon helicoid as function of N, is shown in the diagram in Figure 13. For 
N>15, both parameters d, and h, are constant, while for 20 ≤ N ∼25, the 
helical pitch decreases and d increases, leading to formation of the screw 
helicoid. The subsequent pulses increase the coiling density and enhance 
interaction between the neighboring turns of the coils. Further increase of 
N causes progressive decrease in h, so that neighboring turns approach to 
each other while accompanied by a simultaneous increase in d, until h ∼ d 
for N ≥ 27. Beyond N ∼ 30, the helical pitch becomes h<d, and eventually 
h → 0, causing coalescence of the neighboring turns with a catastrophic 
transformation of a tubular-ribbon helicoid into a rippled tube, being a 
lower complexity structure. The Figure 12c(i) shows the screw helicoid under 
the transition into the rippled tube of h ∼ 22.5 µm and d ∼25 µm, being 
characterizeded by ℒ=h/d ∼ 1. The other example of Figure 12c(ii) shows a 
rippled tube partially merged with the background fluid. The process is not 
homogeneous because the ripples seen in the central part have h ∼ 19 µm, 
and d ∼ 22 µm, with ℒ=0.8, while, at both ends of the tube (where merging 
with the background fluid is stronger), the ripples have h ∼ 20 µm and d ≥ 
35 µm, with ℒ ≲ 0.57 ~ 0.5.

The fact that the ripple density is larger at the both ends of the tube than in 
the center, indicates the formation of a standing wave, with compression of 
ripples at the both ends and rarefaction in the center. Rough estimation from 
the micrograph in Figure 12c(ii) gives the wavelength of the standing ripples 
of ∼ 110 µm. It also suggests that the breakdown of the screw helicoids with 
increasing N may be characterized by some phenomenological parameter ℒ. 
Measurement on the micrographs indicates that the screw helicoids exist 
for ℒ ∼ 1.6, rippled ones for 1.2 ≳ ℒ ≳1, and for 1 > ℒ ∼ 0.5, a rippled 
tube merges with the background fluid. Interpretation may be based on the 
fact that increase of the coil density promotes interaction between neighbor 
turns of the coil with simultaneous increase of diffusion and decrease of 
the fluid circulation in the vortex ribbon, Γ ribbon. The decrease of the 
Γ ribbon continues with increasing N, until it becomes comparable with 
or smaller than the diffusion coefficient D between the coils (Γ ribbon ≲ 
D). Eventually, at N=Ncr, the high coil density becomes overcritical, so that 
strong diffusion of the coil causes transformation of the screw helicoids into 
rippled tube. With further increase of N, a rippled tube interacts with with 
the background fluid thus continuing to decrease the fluid circulation, Γ 
ribbon, leading to merging of rippled tube with the background fluid.

This study is focused on multi-pulse laser-matter interaction which causes the 
formation of coiled, bistable-coiled filaments and ribbons or “complexes”, as 
well as their organization into patterns. The hypothesis, that formation of 
complex bistable coiled structures depends on the number of pulses and that 
the complexity of their organization depends on the initial vortex filament 
density, has being confirmed in this study. Their organization ranges from a 
simple random pattern to the layered interconnected super-complex network 
formed in a multi-stage organizational process.

Figure 11). Analysis of the pattern in Figure 8(a-c) shows that random distribution of 
localized strain fields actually lies on nodes of an almost regular 2D lattice.
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The individual (separated) filaments, ribbon coils and helicoids in a random 
pattern show conformal transformation or transition from one type of 
helicoids of higher energy state into another type of lower energy state 
which is mediated by the NLS non-topological Davidov’s-like soliton. This 
indicates a great similarity with conformal transformation of some biological 
molecules (proteins). From the biochemical and physical characteristics of 
several molecular springs and ratchets they may be assumed as analogous to 
eukaryotic molecular engines.

The pattern formation in a high density filament array is a multistage 
process starting with vortex filaments as basic structures. In the next stage, 
they become organized into bundles, thick filaments, ribbons, and tubular-
ribbons. The increase in N, causes transformation of filaments into coiled 
and bistable coiled helicoids and of ribbon into ribbon helicoids as well as 
their organization into network on 2D lattice. Further increase of N causes 
tendency of the network organization to become 3D layered structure. 
The transformations follow the scenario in which topological complexity 
of the new structure increases with the number of pulses, thus realizing 
configurations with more efficient energy relaxation.

The number of pulses, as the critical parameter for the filament and ribbon 

transformations as well as their organization is equivalent to some critical 
oscillatory frequency. Such transformations under some oscillatory field 
appear as a rather general phenomenon in condensed matter physics, 
molecular physics, biology and other systems at all spatial scales, from the 
atomic-one for superfluid He, to nano-and micro-scale for the polymers and 
biopolymers, up to the astrophysical scale.
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