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Synthesis and drug delivery applications for

mesoporous silica nanoparticles 
Ping Zhao*, Min-Chao Liu, Hui-Chao Lin, Xiang-Yu Sun, Yan-Yu Li, Si-Qi Yan

Nowadays, nanoscience is considered as one of the most important 
research and development fields in modern science. Due to the advent 

of new and improved technology in recent years, research on nanotechnology, 
in particular, engineered nanomaterials, has received considerable attention 
(1). According to the pore size of porous, nanomaterials can be divided 
into the following three categories, namely, microporous, mesoporous, 
macroporous materials. Pore diameter differences will lead to changes in the 
nature of the materials. The mesoporous material is a kind of inorganic or 
organic material with ordered pore structure and pore size of 2-50 nm (2). 
Mesoporous silica materials as one of them, were intensively researched in 
recent decades (3-5).

Since the mesoporous silica material have excellent physicochemical 
characteristics such as high surface area, tunable pore size, pore volume, 
thermal and chemical stability, hydrophilicity, enriched surface silanol groups 
and easy surface modifications (6-10) to expand its scope of application. In 
addition, studies have shown that mesoporous silica materials also have good 
biocompatibility and biodegradability in animal or plant cells (11-13). Based 
on the above advantages, mesoporous silica has a wide range of applications 
in adsorption and separation (14-17), catalysis (18-20), chromatography 
(21), biomedical (22-25) and many other fields. In this paper, the synthesis, 
structural design factors, drug transport and biological safety of the relevant 
progress on MSNs were reviewed.

LITERATURE REVIEW

The synthetic mechanism of mesoporous materials

Many mechanisms have been proposed to explain the formation of MSNs 
since the mesoporous material has emerged. Among the various mechanisms 
proposed, there is a common characteristic of the solution that the surfactant 
activates the solvated inorganic precursor to form a mesoporous structure. 
At present, the molecular lattice mechanism of the mesoporous material 
synthesis, is different from that of the traditional microporous molecular 
hoof synthesis. The mechanism is divided into the following categories 
that liquid crystal template mechanism, rod-like self-assembly mechanism, 
charge density matching mechanism and association mechanism. Most of 
these models believe that the surfactant in the solution directs the inorganic 
precursors to self-assemble.

Liquid crystal template mechanism

Liquid crystal template mechanism was first proposed by Mobile’s company 
(26,27). The core of this mechanism is that the mesoporous MCM-41 is 
formed as a template for the liquid crystal phase formed by the surfactant. 
Surfactants with amphiphilic properties evolved from spherical micelles to 

form rod-like micelles in aqueous systems. The core of the rod-shaped micelles 
consisted of the hydrophobic end of the surfactant and the outer surface 
consisted of hydrophilic ends. When the surfactant concentration increases 
to a certain extent, a hexagonal ordered liquid crystal phase is formed. In 
this case, the monomer molecules or oligomers formed by the hydrolysis of 
the inorganic species in the solution interact with the hydrophilic end, and 
then deposited on the surface of the surfactant micelle to form a mesoporous 
material. The mechanism of liquid crystal template is simple and intuitive, 
and the concept of template is introduced in the synthesis of mesoporous 
materials. Therefore, this mechanism is widely accepted by researchers in the 
early days (26,27).

Synergistic mechanism

Synergistic mechanism is another synthetic mechanism of the mesoporous 
materials proposed by Mobile’s scientists. Similar to the Liquid crystal 
template, this mechanism also considered the liquid crystal phase of 
the surfactant as a template for the mesoporous material. The difference 
between these two mechanisms is that the synergistic mechanism considers 
the liquid crystal to be produced after the addition of the inorganic species. 
The interaction between the inorganic species and the surfactants, mainly 
manifests on the fact that the micelles of the organic surfactants accelerate 
the condensation of inorganic precursors and meanwhile the later could 
promote the formation of the former. The synergistic mechanism can explain 
the low surfactant concentration in the synthesis of mesoporous materials 
and the different structures between the mesostructure and the liquid crystal 
(28).

Cooperative self-assembly mechanism

In addition, there is a widely accepted collaborative self-assembly mechanism, 
which suggests that ordered mesoporous is achieved by cooperative assembly 
between surfactant and inorganic species. For the synthesis of mesoporous 
silica nanoparticles, the interactions between the cations of surfactant 
and anions of poly silicate leads to the polymerization of the silicate at 
the interface. With the process of the reaction, the charge density of the 
inorganic layer and the composition of the inorganic and organic species will 
change gradually, and the final phase is determined by the polymerization 
degree of the inorganic species (29). 

SYNTHESIS OF MESOPOROUS SILICA NANOPARTICLES

The pore silica nanoparticles have the advantages of large specific surface 
area, adjustable particle size and thermal stability. Currently, the synthesis of 
mesoporous silica materials is mainly based on the surfactant as a structure-
directing agent. The main methods are: sol-gel method (30), hydrothermal 
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ABSTRACT

In the past decade, mesoporous silica nanoparticles (MSNs) have attracted 
increasing attention for their potential biomedical applications. With 

their tailored mesoporous structure and high surface area, MSNs as drug 
delivery systems (DDSs) show significant advantages over traditional drug 
nanocarriers. MSNs have the characteristics of large specific surface area 
and large pore volume, easy to be modified on the inner and outer surfaces, 
high drug loading and high targeting ability, thus showing a wide application 
prospect. In this paper, the influencing factors, functionalization of MSNs 
synthesis method and drug delivery system were introduced, and the 
environmental response in drug releasing were also reviewed.
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synthesis (31,32), microwave synthesis (33) and Template synthesis method 
(34,35)

Sol-gel method

Sol-gel method provides many favorable conditions for the synthesis of 
particles, such as controlled functional modification on the surface. There 
are two stages in the synthesis process, the first stage is the formation of 
particles in the solution of glue body suspension; and then, the particles 
form a three-dimensional network of polymer chain, the gel. General 
synthesis mesoporous silica template types are as follows: block copolymer 
template, surfactant template, floating template, machine small molecule 
template and so on. This sol-gel technology has the advantages such as low-
temperature environment, simple equipment easy controlled operation and 
high product purity (36).

Hydrothermal synthesis

The basic process of hydrothermal synthesis is using surfactants as a template 
agent, acid or alkali as a catalyst, and then slowly adding an inorganic 
substance to the mixed solution to obtain a hydrogel which is transferred to 
the autoclave. High temperature and high pressure are needed to deal with 
the reaction precursor, and the precursor are separated and organic matter 
is removed (37). This synthetic method has a distinctive feature: its reaction 
environment is far superior to the general conditions; can completely dissolve 
precursor, effectively reducing the material reaction time; meanwhile, 
improving the hydrothermal stability of the material. Hydrothermal synthesis 
method also has shortcomings, such as the long reaction time and complex 
process. Therefore, the development of a simple and energy-saving method 
is needed. The new synthetic process is a challenge for current mesoporous 
materials

Microwave synthesis method

Microwave is a kind of electromagnetic wave (frequency 300MHZ-300GHZ). 
Microwave is different from the traditional heating method since it is under 
the action of electromagnetic field with both inside and outside heating, 
rapid heating speed, energy efficient and so on. The mesoporous materials 
were synthesized by microwave irradiation, and the whole process was less 
than 6 hours. Compared with the hydrothermal method, the synthesis 
time is greatly reduced. Obviously, the microwave technology is energy-
saving, time-saving and simple operation (38) Wu et al. (39) first prepared 
nano-mesoporous materials by microwave method. The results showed that 
the mesoporous silicon with ordered pore size was rapidly synthesized by 
microwave method, and the crystallinity was good. MCM-41 (39) MCM-48 
(40), SBA-15 (41) have also been successfully synthesized using microwave 
radiation.

Template synthesis method

Template synthesis of surface activity in the solvent, acid or alkaline conditions 
to form micelles, inorganic precursors to micelles as a template slowly react, 
and then burn back to form mesoporous ordered materials (42-45). There 
are two kinds of soft template method and hard template method. The non-
covalent bond between the surface active agent and the inorganic reaction is 
a soft template method. The product is typically between 10 and 1000 nm. 
A hard template is a method of in situ preparation of a solid nanocrystal or 
mesoporous material, which is a template for filling an object with its pores. 
The range of the template pore walls is 2-50 nm of the mesopores, so that the 
ordered mesopores of 2-50 nm of the product after removal of the template.

DRUG DELIVERY SYSTEM

As a drug delivery system, the loading of the drug in the mesoporous silica 
material and the release in a given environment are two key processes. 
Currently, the pore size, specific surface area, pore size, pore and surface 
functionalization are the main factors influencing mesoporous SO2 
materials on drug loading and release (46).

Pore size

For drug loading process, the ordered mesoporous silica material, which 
is used as the carrier, is immersed in the high concentration of the drug 
solution, and the drug enters the channel of the ordered mesoporous SO2 
through the diffusion process. In this process, the pore size of the mesoporous 
silica material and the relative size of the drug to be loaded will directly affect 
the loading process of the drug.(47) Wright et al. investigated the adsorption 
of SIS-15 mesoporous urethane materials for different sizes of proteins. (48) 
When the pore size (5.1 nm) is larger than the protein size, the protein will 
be relatively easy to enter the pore of the MSNs, where the protein is mainly 

supported in the pore structure; and when the pore size is less than protein 
size, the adsorption occurs mainly on the outer surface of the MSNs. When 
the drug is released from the channel, the size of the pore has a significant 
effect on the drug release rate. Vallet-regi et al. Investigated the effect of 
different pore sizes on the release rate. They observed that the release rate of 
the IBU from the mesoporous channels decreases with decreasing mesopore 
size (49).

Specific surface area 

Since the size of most drugs is much smaller than the pore size of the MSNs, 
only the drug adsorbed in the pores of the mesopore (a small amount of 
MSNs) can be retained by the MSNs in the channels. In this sense, the 
main factor affecting the drug loading of the MSNs is its specific surface 
area. Vallet-Regi et al. (49) loaded sodium phosphonic acid using MCM-41 
with small pore size (3 nm) and larger surface area (1157 m2/g), and SBA-15 
with larger pore size (9 nm) and smaller surface area (719 m2/g). The drug 
loading was 14% and 8% for MCM-41 and SBA-15, respectively, indicating 
that the larger specific surface area was beneficial to the drug loading (50). 
The subsequent literature also supports this view (51,52). Although the larger 
specific surface area is beneficial to increase the loading of the drug, it is also 
inevitably reduces the releasing rate of the drug molecules from the channel, 
due to the presence of more interacting sites between the drug molecules and 
the materials. In the above literature, the release rate of Alendronate from 
the MCM-41 pore shows a first-order kinetics, while the release rate from 
SBA-15 shows zero-order kinetics (50).

Pore volume 

The pore volume of MSNs mainly affects the loading of bulk molecules, 
especially proteins (53-57). Vallet-Regi et al. used SBA-15 (pore volume 1.1 
cm2/g) and mesoporous foamed silica (MCF, pore volume 1.9 cm3/g) to 
support bovine serum protein (57,58) and found that SBA-15 loaded BSA 
with an amount of 15% and MCF load of 24%. Thus, it is clear that the larger 
pore volume is conducive to improving the loading of the guest molecules.

Pore and surface functionalization 

It is possible to further functionalize the mesoporous silica because the outer 
surface and the pore walls of the mesoporous SO

2
 material are rich in silicon 

hydroxyl groups. The functionalization of mesoporous silica can adjust the 
chemical properties of the surface of the mesoporous silica material (59), 
alter the pore hydrophobicity/hydrophobicity (60), acidity and pore size (61), 
and so on. For example, due to the strong interaction between the amino 
group and the carboxyl group of the IBU, the mesoporous silica material 
functionalized by the amino group can effectively increase the amount of 
loading and prolong the sustained release time. The hydrophilicity of the 
amino group is better than that of the silanol group. The surface modification 
of the mesoporous SO

2
 material can effectively improve the hydrophilicity 

of the mesoporous SO
2
 material, thereby improving the hydrophilicity of 

the amount of molecular load (62). Although the surface functionalization 
of the mesoporous silica material can effectively regulate the loading of 
different drugs, in general, due to the strong interaction between the host 
and guest, the higher drug loading will reduce the drug release rate. Thus, to 
improve the release rate of drugs in different environments, it is the feasible 
improvement method to synthesize the mesoporous silica materials with 
certain environmental responsiveness on its surface.

ENVIRONMENTAL RESPONSE MESOPOROUS SILICON 
DIOXIDE DRUG DELIVERY SYSTEM

The pores within the mesoporous materials can only play a role in slow 
release under normal physiological conditions, but they cannot block the 
drug molecules. In comparison, the modification of responsive molecules 
to the surface of the mesoporous material not only blocks the channels, 
prevents the “premature release” of the drug molecules, but also has the 
function of stimulating the release of the drug molecules in response to the 
environment. Currently, based on the mesoporous silica nanoparticles, the 
researchers have developed a series of controlled release systems that respond 
to pH (62-67), light (68-72), enzyme (73-76), redox (77-83), and temperature 
signals (84,85).

pH controlled release

Normal human tissue and tumor sites and other organizations have different 
pH values. To achieve targeted drug release and improved drug utilization, 
this pH difference could be applied in the drug carrier design. Zhang and his 
research group members successfully designed and synthesized Fe

3
O

4
/silica 

core/shell nanocarrier, and pH sensitive amide bond was conjugated on the 
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particle surface. The experiment showed that these particles have a good pH 
response to control release performance (85). The control release system of 
pH response is an intracellular self-responsive release system, which is more 
effective than other response systems.

Light control release

Light is an important field stimulus signal that can improve the operability of 
the controlled release system and is very sensitive in responding to external 
stimuli. Light can achieve quantitative controlled release by adjusting the 
light intensity and emission wavelength. The main principle is to control 
the light time and light area to break the chemical bond, which results in 
the opening of the mesoporous nanometer door. Jiang et al. have modified 
the carboxy-functional spiropyran on the surface of the mesoporous silica 
containing the drug, and the drug can be encapsulated in the channel due to 
the hydrophobicity of the carboxyl group. When irradiated with ultraviolet 
light, spiropyran structure changes, resulting in drug release to achieve the 
purpose of treatment (86,87). However, since the developed light control 
system mainly responds to the optical wavelengths, it is difficult to apply to 
cells and the human body. Compared with ultraviolet or optical light, near-
far infrared light can penetrate the cell tissue, and does not cause damage to 
cells and tissues, and thus the development of near-far infrared light control 
system is the future research direction.

Enzyme controlled release

It is well known that the metabolism of the human body and all the chemical 
reactions related to life activities are inseparable from the participation of 
enzymes. There are more than 700 kinds of enzymes needed for human 
life activities. The main parts are stomach, mouth, intestine, liver, pancreas 
with muscle and so on. Compared with other response systems, the enzyme-
controlled release system is more specific, more accurate, and more suitable 
for human environment. Since some human disease signals are due to the 
abnormal increase in some enzyme indicators, the detection of these enzymes 
and response to the release of these enzymes have a very important clinical 
significance. Gil et al loaded the metal ruthenium complex in MCM-41, and 
the ester moiety on its pore modification was used as a “nanometer gate”. 
When the esterase was present, the ester bond on the group was hydrolyzed, 
releasing the drug while releasing the glycol (87,88).

Temperature responsiveness

Because most of the tumor tissue temperature is slightly higher than the 
normal temperature of the human body (40℃), the temperature-sensitive 
substances becomes a hot spot in the field of functional macromolecules 
(89,90). Temperature responsive polymer refers to a polymer shows different 
properties at different temperatures. When the temperature of the polymer 
is raised to a certain temperature, its solubility will be reduced. This 
temperature is called the lowest critical solution temperature (LCST) (90). 
Among them, polyisopropyl acrylamide (PNIPAM) is the most commonly 
used a thermosensitive polymer, the LCST is 32, which is close to the body 
temperature. Baeza A et al. (91) modified the temperature-sensitive polymer 
PEI/NIPAM onto the surface of the loaded iron oxide and silica core shells 
to prepare a temperature-responsive drug delivery system. When the system 
was in the alternating magnetic field, the resulting magnetic heat causes the 
temperature-sensitive polymer to phase change and release the drug.

Redox responsiveness

The redox-responsive MSNs drug delivery system is typically prepared by 
introducing disulfide bonds into the synthesis, using organic molecules or 
inorganic nanoparticles for nanoser. When adding a reducing agent such as 
dithiothreitol glutathione, the disulfide bond will be disconnected. The drug 
molecules are thus released from the opened mesopores.

Lai et al. (92) controlled the release of drug molecules and neurotransmitters 
by immobilizing CdS nanoparticles on the surface of the mesoporous silicon 
as a moveable “cap”. Vancomycin and adenosine triphosphate (ATP) were 
loaded in the MSN delivery system. In vitro experiments showed that when 
the system is in the dithiothreitol (DTT) or mercaptoethanol (ME) and other 
reductase environment, disulfide bonds broken, resulting in the release of 
drugs from the pore size. 

DISCUSSION

In addition to the above-mentioned response control release, some other 
controlled releases were researched, such as magnetic materials, DNA, 
chemical substances and other signals of a series of controlled release 
system. Meanwhile, researchers have designed a series of controlled release 
systems that respond to a variety of environmental stimuli. With the study 

of the controlled release system of mesoporous silica, the researchers 
prepared composite mesoporous silica nanostructures by introducing 
other nanomaterials. A series of controlled release, targeted transport 
and photodynamic binding were prepared, namely muti-functional MSNs 
delivery system. We will discuss this in other review.

CONCLUSION AND OUTLOOK

The hole material, due to its unique performance, has shown great 
application in various fields. The drug delivery system based on mesoporous 
silica can be precisely controlled in terms of size structure and the results 
of targeted transmission. Controlled release drug and multi-functional 
development have also yielded fruitful results. For example, multifunctional 
nanocomposites that respond with light, electricity, heat, and magnetic 
activity in combination with photodynamic therapy have been developed. 
However, for further practical application, attention should be paid to 
the following aspects: the release of the behavior is single; some special 
functionalized MSNs have toxicity to normal physiological behavior of cells 
and organisms; precise and efficient drug-controlled release remains to be 
explored. Although there are many problems not resolved, but it is believed 
that these problems will be gradually overcome and MSNs will be more 
efficient in diseases diagnosis and treatment.
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