Targeting metabolic acidosis in patients with chronic kidney disease (CKD) as a principle goal to decrease mortality and slow the progression of the disease

Mohamed M Taha1*2


Chronic kidney disease is an independent mortality and cardiovascular disease risk factor, often begins with some kidney damage initially asymptomatic, but as it progresses through the stages of CKD patients develop symptoms and complications of fluid overload, hypertension, hyperkalemia, metabolic acidosis, anemia, and mineral and bone disorders. Normal kidneys maintain acid-base balance by excretion of the daily acid load by the urinary excretion of hydrogen ions, both as titratable acidity and as ammonium. Patients with chronic kidney disease live with relatively increased acid load due to reduced nephron mass, but may still be able to maintain near normal acid-base balance especially in the early stages of the disease by increasing ammonium production and excretion in the urine [1]. With progression of the chronic kidney disease (CKD) metabolic acidosis becomes a common complication with increasing prevalence as glomerular filtration rate declines. Especially among patients with an estimated glomerular filtration rate (eGFR) <25 ml/min/1.73 m2 with reported consequences including growth retardation in children, exacerbation of bone disease, increased muscle degradation with resulting frailty, reduced albumin synthesis, and increased inflammation [2]. The prevalence of metabolic acidosis, in non-dialysis dependent chronic kidney disease patients is about 15% [3]. Clinical Practice Guidelines for the Evaluation and Management of Chronic Kidney Disease suggest that in people with CKD and serum bicarbonate concentrations <22 mmol/l treatment with oral bicarbonate supplementation be given to maintain serum bicarbonate within the normal range, unless contraindicated [4,5].

Regarding prevention of chronic kidney disease progression clinical guidelines emphasized glycemic control, individualized blood pressure control, and albuminuria management with ACEI and ARB [4,5]. Early animal studies showed a correlation between metabolic acidosis and the pathogenesis of chronic tubulo-interstitial disease, and also showed the rule of alkali therapy in minimizing this effect. Nath KA, et al., studied supplementation with sodium bicarbonate (NaHCO3) in rats with remnant kidneys, he concluded that alkali supplementation reduced chronic tubulo-interstitial disease in the remnant kidney of the rat, and he proposed that these results, at least in part, from reduction in cortical ammonia and its interaction with the alternative complement pathway [6]. Susantiphong et al., did a systematic review and meta-analysis on 6 randomized controlled trials, on the effect of sodium bicarbonate on benefits and harms in patients with CKD. Their analysis concluded that Alkali therapy was associated with an improvement in kidney function, which may afford a relatively increased acid load due to reduced nephron mass, but may still be able to maintain near normal acid-base balance especially in the early stages of the disease by increasing ammonium production and excretion in the urine [1]. With progression of the chronic kidney disease (CKD) metabolic acidosis becomes a common complication with increasing prevalence as glomerular filtration rate declines. Especially among patients with an estimated glomerular filtration rate (eGFR) <25 ml/min/1.73 m2 with reported consequences including growth retardation in children, exacerbation of bone disease, increased muscle degradation with resulting frailty, reduced albumin synthesis, and increased inflammation [2]. The prevalence of metabolic acidosis, in non-dialysis dependent chronic kidney disease patients is about 15% [3]. Clinical Practice Guidelines for the Evaluation and Management of Chronic Kidney Disease suggest that in people with CKD and serum bicarbonate concentrations <22 mmol/l treatment with oral bicarbonate supplementation be given to maintain serum bicarbonate within the normal range, unless contraindicated [4,5].

Regarding prevention of chronic kidney disease progression clinical guidelines emphasized glycemic control, individualized blood pressure control, and albuminuria management with ACEI and ARB [4,5]. Early animal studies showed a correlation between metabolic acidosis and the pathogenesis of chronic tubulo-interstitial disease, and also showed the rule of alkali therapy in minimizing this effect. Nath KA, et al., studied supplementation with sodium bicarbonate (NaHCO3) in rats with remnant kidneys, he concluded that alkali supplementation reduced chronic tubulo-interstitial disease in the remnant kidney of the rat, and he proposed that these results, at least in part, from reduction in cortical ammonia and its interaction with the alternative complement pathway [6]. Susantiphong et al., did a systematic review and meta-analysis on 6 randomized controlled trials, on the effect of sodium bicarbonate on benefits and harms in patients with CKD. Their analysis concluded that Alkali therapy was associated with an improvement in kidney function, which may afford a relatively increased acid load due to reduced nephron mass, but may still be able to maintain near normal acid-base balance especially in the early stages of the disease by increasing ammonium production and excretion in the urine [1]. With progression of the chronic kidney disease (CKD) metabolic acidosis becomes a common complication with increasing prevalence as glomerular filtration rate declines. Especially among patients with an estimated glomerular filtration rate (eGFR) <25 ml/min/1.73 m2 with reported consequences including growth retardation in children, exacerbation of bone disease, increased muscle degradation with resulting frailty, reduced albumin synthesis, and increased inflammation [2]. The prevalence of metabolic acidosis, in non-dialysis dependent chronic kidney disease patients is about 15% [3]. Clinical Practice Guidelines for the Evaluation and Management of Chronic Kidney Disease suggest that in people with CKD and serum bicarbonate concentrations <22 mmol/l treatment with oral bicarbonate supplementation be given to maintain serum bicarbonate within the normal range, unless contraindicated [4,5].

Regarding prevention of chronic kidney disease progression clinical guidelines emphasized glycemic control, individualized blood pressure control, and albuminuria management with ACEI and ARB [4,5]. Early animal studies showed a correlation between metabolic acidosis and the pathogenesis of chronic tubulo-interstitial disease, and also showed the rule of alkali therapy in minimizing this effect. Nath KA, et al., studied supplementation with sodium bicarbonate (NaHCO3) in rats with remnant kidneys, he concluded that alkali supplementation reduced chronic tubulo-interstitial disease in the remnant kidney of the rat, and he proposed that these results, at least in part, from reduction in cortical ammonia and its interaction with the alternative complement pathway [6]. Susantiphong et al., did a systematic review and meta-analysis on 6 randomized controlled trials, on the effect of sodium bicarbonate on benefits and harms in patients with CKD. Their analysis concluded that Alkali therapy was associated with an improvement in kidney function, which may afford a relatively increased acid load due to reduced nephron mass, but may still be able to maintain near normal acid-base balance especially in the early stages of the disease by increasing ammonium production and excretion in the urine [1]. With progression of the chronic kidney disease (CKD) metabolic acidosis becomes a common complication with increasing prevalence as glomerular filtration rate declines. Especially among patients with an estimated glomerular filtration rate (eGFR) <25 ml/min/1.73 m2 with reported consequences including growth retardation in children, exacerbation of bone disease, increased muscle degradation with resulting frailty, reduced albumin synthesis, and increased inflammation [2]. The prevalence of metabolic acidosis, in non-dialysis dependent chronic kidney disease patients is about 15% [3]. Clinical Practice Guidelines for the Evaluation and Management of Chronic Kidney Disease suggest that in people with CKD and serum bicarbonate concentrations <22 mmol/l treatment with oral bicarbonate supplementation be given to maintain serum bicarbonate within the normal range, unless contraindicated [4,5].

References


1Division of Nephrology, James A. Haley Veterans’ Hospital, Tampa, Florida, 2Department of Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA

*Correspondence: Mohamed M Taha, Division of Nephrology, James A. Haley Veterans’ Hospital, Tampa, Florida, USA, E-mail: Mohamed.Taha@va.gov