Tetramethylprazine, a potential adjuvant to inhibit cancer metastasis through CXCR4/SDF-1 pathway

Jing C, Yunhe Song, Pei Chen, Jingzhi Yu, Keming Yu

Chuanxiong (Ligusticum wallichii Franch.) was first described in a traditional Chinese medicine book, Shenmou Bencao Jing, written in 200 BC. It has been used in clinical treatment for more than 2000 years (1). The bioactive component, 2, 3, 5, 6-tetramethylprazine (TMP) was extracted from Chuanxiong in 1973 (2). Currently, there are 36 pharmaceutical factories that produce injections or tablets in China (3,4). These medicines were firstly used in treatment of patients with neural disease with mild side effects, such as, ischemic, cerebral infarction, Alzheimer’s disease (AD), Parkinson’s disease (PD) and multiple sclerosis (MS) (5-8). However, accumulating evidence has confirmed that combining TMP with other treatments could significacontly attenuate multidrug resistance of chemotherapy and inhibit proliferation and metastases of cancer cells (9). This mini-review is focused on the application and mechanism of TMP to proliferation and metastasis of cancer cells.

TMP application in patients

Chuanxiong combining with other Chinese herbs was wildly used in treatment of malignant tumor, such as, gliomas (10), lung cancer (11), ovarian cancer (12), gastric carcinoma (13), breast cancer (14), liver cancer (15), bladder cancer (16), acute lymphocytic leukemia (17) etc. Since the bioactive component, TMP, was identified in 1977, there have been an overwhelming number of applications of tetramethylprazine hydrochloride (TMPH) as a highly efficient clinical treatment for tumor patients. For example, Han et al had treated 36 patients with different types of tumors through chemotherapy with tetramethylprazine injection, which had higher efficacy than using chemotherapy only. The outcome demonstrated that the patients in the treatment group obtained a more significant therapeutic effect than the control (18). Additionally, Xue et al reported that the radiotherapy with adjuvant TMP had a great effect on inhibition metastases of brain tumor (19).

The mechanism of TMP on anti-tumor activity

Although Ligusticum and TMP are wildly used in the treatment of patients, the precise molecular mechanisms behind TMP’s anti-tumor activity are not well defined. Ancient Chinese medical books classically described that Ligusticum plays an important role in invigorating blood circulation, promoting the flow of Qi, dispelling wind, and alleviating pain (20,21). Modern medical technology further demonstrated that TMP could promote blood circulation and remove blood stasis by assaying for whole-blood viscosity, blood pressure, and platelet aggregation rate (22-24).

For its antitumor mechanism, there are several points. Clinical evidence has confirmed that combining TMPH or Chuanxiong with other treatments can significantly attenuate multidrug resistance (MDR) of chemotherapy and increase the sensitivity of cancer cells to radiation in cancers such as nasopharyngeal, lung, breast, renal and ovarian cancer (25-27). One of the underlying mechanism of TMP reverse MDR might be its down-regulating effect of P-170, a key protein related to MDR (25), indicating that TMP can significantly attenuate multidrug resistance (MDR) of chemotherapy and increase the sensitivity of cancer cells to radiation in cancers such as nasopharyngeal, lung, breast, renal and ovarian cancer (25-27). One of the underlying mechanism of TMP reverse MDR might be its down-regulating effect of P-170, a key protein related to MDR (25), indicating that TMP can

In addition, we demonstrated that TMP protects cerebral neurons and inhibits glioma by regulating chemokine receptor CXCR4 expression both in vitro and in vivo (39,40). Down-regulation of CXCR4 expression in cerebral neurons by TMP can inhibit somatic Ca2+ increase. Accordingly, low level somatic Ca2+ could decrease glutamate releasing from glia cells. Thus, TMP induces neural protection. On the other hand, down-regulation CXCR4 expression in glioma cells by TMP can effectively inhibit the cell viability and migration of cultured C6 glioma cells. Similarly, the neurotoxicity caused by glutamate released from glioma cells is attenuated by TMP treatment, which reduces the damage to neural cells around glioma. This study firstly elucidated the mechanism of TMP-mediated suppression of C6 gliomas and neural protection, which could explain the molecular mechanism of its clinical application (19,49,50).
However, TMP is a multiple-function traditional Chinese medicine. Apart from CXCR4/SDF-1 axis, caspase-3 and PARP pathway, BMP/Smad/Id-1 signaling, NFkB-dependent mechanism and etc have also been shown involved in anti-tumor effect of TMP (51-53). Moreover, the activation of CXCR4 affects gene transcription (54). For example, CXCR4/Y1 inhibits migration of VEGF network and angiogenesis during malignancy (55). YY1 forms an active complex with HIF-1α at VEGF gene promoters and increases VEGF transcription and expression. Thus, the mechanism of the TMP-mediated antitumor could be very complicated, more investigation is required.

Conclusion

In conclusion, the application and molecular mechanism of TMP indicate that TMP would be a useful adjuvant medicine in inhibition of cancer cell migration, proliferation, and neural protection. However, currently TMP is only used in some oriental countries, such as China and Korea. Hopefully more studies could be performed to extend its application in clinical therapy in other countries.

ACKNOWLEDGMENT

This paper was supported by the grants from the National Natural Science Foundation, China (Project: 81370987, 81470626). The authors have declared that no conflict of interest exists.

REFERENCES

4. http://www.drugfuture.com/cndrug/search.aspx?SearchTerm=%E5%B7%9D%E8%8A%8E%E5%97%AA&DataFieldSelected=auto.
Tetramethylprazine, a Potential Adjuvent to Inhibit Cancer


47. Zhou Y, Larsen PH, Hao C, et al. CXCR4 is a major chemokine receptor on glioma cells and dedicates their survival. J Biol Chem. 2002;277;49481-87


