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W hen first unveiled, the somatic model of colorectal cancer (Figure 1) 
was thought to be the harbinger of a new era of molecular cancer 

biology – with simple molecular pathways for each of the major cancer types 
that could be mined and exploited for prevention, intervention and treatment 
strategies. The pathway presented included both a well-established oncogene, 
ras, as well as the gene that exemplified tumor suppression, p53, which at 
that time was touted as the universal molecular constant in carcinogenesis 
(1-5). Two other theoretical genes were identified by areas of consistent 
“loss-of-heterozygosity” at specific stages of colorectal carcinogenesis: the 
mutated-in-colorectal-carcinoma (MCC) gene on chromosome 5 that seemed 
to begin the process, and the deleted-in-colorectal-carcinoma (DCC) gene on 
chromosome 18, which was associated with transformation from a class II to 
a class III adenoma. Significant validation for the pathway was provided by 
the subsequent identification, cloning and characterization of both of these 
genes, although there is still some controversy as to whether those initially 
identified genes are actual the cancer “drivers” in those regions (6). In most 
models (including ours), the MCC gene has been replaced with the closely 
linked APC gene, the genetic determinant of familial adenomatous polyposis 
(FAP), a hereditary syndrome with a 95% incidence of colorectal cancer by 
age 50 (7).

Instead of this model heralding a new era of simpler cancer molecular 
etiology, however, it soon became clear that colorectal cancer was a 
special case, with a single major molecular pathway common enough to 
appear to be unique. With alternate pathways (some subtype specific) and 
branching, most major cancer types have only nonrandom associations 
with specific genes, rather than established pathways. For example, there 
are at least three overlapping pathways for lung cancer (2) and no clear 
pathway or pathways have emerged for breast cancer (3,4). Indeed, there 
are now three acknowledged molecular pathways for the development of 
colorectal cancer (8,9). In retrospect, expecting cancer types to have unique 
molecular pathways was extremely naïve, since even a casual consideration 
of the original proposed pathway for colorectal cancer reveals functional 
alternatives that have since been observed. For example, dysregulation of Raf 
can substitute for a ras mutation, having a similar effect on the activation of 
the MAP kinase pathway (10,11). Also, MDM2 acts as a sink for P53 protein, 
so overexpression of MDM2 is an alternative mechanism of inactivating p53 
(12). Even a single functional pathway can therefore be traversed through 
alternate molecular events. Thus, although the particular genes identified in 
Figure 1 and other proposed pathways of carcinogenesis have been used to 
predict risk of cancer and facilitate early detection (13,14), optimize treatment 
(15) and monitor treatment response (16), they require personalization for 
individual tumors for optimal application. There is another element to the 
pathway, however, that is shared by all known and hypothesized molecular 
models of carcinogenesis: the arrows.

ALTERNATE MECHANISMS OF HEREDITARY CARCINOGENESIS

The arrows in Figure 1 represent the mechanisms by which carcinogenesis 
proceeds; how the oncogenes become activated and the tumor suppressor 
genes inactivated.  They are usually casually defined as “mutation,” although 
we are well aware that they include types of events that go well beyond 
traditional point mutation (17) (Table 1).

A second, and actually more common type of hereditary colorectal cancer is 
hereditary non-polyposis colorectal cancer (HNPCC), also known as Lynch 
syndrome (4,18). Whereas, it initially appeared that the predisposition to 
and acceleration of onset of colorectal cancer in the other hereditary 
colorectal cancer syndrome, FAP, was due to inheritance of a necessary 
event in the common pathway of colorectal carcinogenesis, effectively 
shortening the pathway, HNPCC involves a set of genes not invoked in 
the sporadic molecular pathway, genes involved in DNA mismatch repair 
(MMR). The mismatch repair genes can be classified as a subset of tumour 
suppressor genes known as “mutator” genes; meaning that they mediate 
some of the mechanisms whereby accumulation of mutations can proceed 
to carcinogenic transformation. Indeed, although hereditary inactivating 
mutations in several MMR genes can contribute to carcinogenesis in specific 
patients and their families, in each case they still represent an additional step 
in the pathway of carcinogenesis (reduction to hemizygosity or homozygosity 
of the inherited deficient MMR gene), actually lengthening the pathway; 
paradoxically, however, complete loss of mismatch repair allows for a faster 
traverse of the pathway, with faster accumulation of the subsequent events 
necessary to produce the initial transformed tumor cell. Such genomic 
instability essentially makes the arrows themselves shorter (Figure 2). 

FURTHER MECHANISMS OF GENOMIC INSTABILITY IN 
COLORECTAL CANCER

Another pathway of colorectal carcinogenesis has been defined largely due to 
its dependence on chromosomal instability (CIN) (8). Aberrant karyotypes 
were one of the first characteristics of tumors to be generalized (19) and can 
be due to ongoing chromosomal instability (20). Recent evidence suggests 
that loss of the APC gene also affects genomic stability, by inhibiting DNA 
base excision repair (BER) (21). We have shown consistent downregulation 
of DNA nucleotide excision repair (NER) in early stage breast cancer (22). 
With all of this evidence, it is difficult to understand how genomic instability 
was originally overlooked as a “hallmark” of cancer (23), and added later 
only as an “enabling factor” (24). This is in contrast to the “mutator” theory 
of carcinogenesis, which states that the acquisition of events necessary for 
carcinogenic transformation in a single cell could not occur within a human 
lifetime without the increase in frequency afforded by some type of genomic 
instability (25). Perhaps the resolution of these ideas would be that genomic 

The arrow of carcinogenesis
Stephen G Grant PhD

Grant SG. The arrow of carcinogenesis. J Mol Cancer. 2017;1(1):1-6.

Many models of molecular carcinogenesis involve a multi-step progression 
through an accumulation of genetic and epigenetic events conferring 
various aspects of the transformed phenotype. Identification of tissue type-
specific pathways involving distinctive genes has had some success, but it is 
becoming clear that such pathways may well be unique to each tumor. As 
an alternative, some researchers have targeted the mechanisms responsible 
for the accumulation of aberrant genes or gene expression, the “arrows” 
of transition between steps. The frequency of such genetic and epigenetic 
changes depends on both the lifelong exposure profile for an individual, 
as well as host factors, such as their innate rate of replication error and 

ability to remediate induced DNA damage. The totality of these effects can 
be evaluated functionally, however, using a number of approaches.  Broadly 
defined, cumulative determinations of somatic mutational burden have been 
shown to predict subsequent cancer development, as well as demonstrating 
the development of genomic instability as a common characteristic of aging, 
that presages cancer incidence.  Well-established and validated methodologies 
exist that can be applied to the monitoring of wellness in patients before 
cancer occurs. 

Key words: DNA repair; Genomic instability; Molecular carcinogenesis; Mutational 
burden
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Figure 1) Accumulation of genetic dysregulation leading to tumorigenic transformation in (A) colorectal epithelium (adapted from (1)) (B) various types of lung epithelium 
(adapted from (2)), and (C) breast epithelium (adapted and updated from (3,4))



3

The arrow of carcinogenesis

J Mol Cancer Vol 1 No 1 December 2017

Figure 2) Two types of hereditary predisposition for colorectal cancer. A) Inheritance of a deficient allele in a tumor suppressor gene that is part of the somatic pathway 
of carcinogenesis; and B) inheritance of a deficient allele in a mutator gene that results in accelerated accumulation of the events in the somatic pathway of carcinogenesis

TABLE 1
Molecular mechanisms of carcinogenesis

Mechanisms of activation of cellular proto-oncogenes

Mutation

Structural mutation1 to hyperactivity

Regulatory mutation1 to overexpression

Regulatory mutation2 to unregulated expression
Epigenetic activation3

Gene amplification
Translocation/inversion/insertion

Functional juxtaposition of proto-oncogene coding regions into heterologous regulatory region

Mechanisms of inactivation of recessive tumour suppressor genes

Mutation

Structural mutation2 to inactivity

Regulatory mutation2 to non-expression

Mutation2 affecting mRNA processing or stability
Epigenetic inactivation4

Gene deletion
Translocation/inversion/insertion Disruption of integrity of gene
Mechanisms of loss-of-heterozygosity of tumour suppressor gene

Mutation

Structural mutation2 to inactivity

Regulatory mutation2 to non-expression

Mutation2 affecting mRNA processing or stability
Epigenetic inactivation4

Gene deletion
Translocation/inversion/insertion Disruption of integrity of gene
Chromosome loss

Chromosome loss and duplication

Mitotic recombination

Gene conversion
1Point mutation
2Point mutation, small deletion or insertion
3DNA hypomethylation, conformational change to euchromatin, histone deacetylation/methylation/demethylation, binding of inhibitory miRNAs
4DNA hypermethylation, conformational change to heterochromatin, histone acetylation/methylation/demethylation, binding of inductive miRNAs
Revised and expanded from (17)
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instability is required to become cancer, but may not be required to maintain 
the cancer phenotype (with discussions of the possible role of genomic 
instability in cancer progression set aside for now).

SHARED MECHANISMS OF CARCINOGENESIS

As we have seen, there is some utility in defining the exact genes altered 
during carcinogenesis, even if it must be done individually for each tumour; 
is there any reason to similarly study the arrows? We normally think of the 
genetic and epigenetic mechanisms that define carcinogenesis as occurring 
through both endogenous processes (26) and the inevitable and unavoidable 
environmental, occupational, medical, lifestyle and accidental exposures 
we are subjected to throughout our lifetime (27). The accumulated effect of 
these processes, as well as any genetic mediating factors, may be referred to 
as the somatic mutational “burden” and has been measured in many ways 
(28,29).

BLOOD-BASED EVALUATIONS OF SOMATIC MUTATIONAL 
BURDEN AND CANCER RISK

Most impressively, screening of baseline chromosome aberration (CA) 
frequency (30) or frequency of micronuclei (MN) (31) in blood cells have 
been shown to be predictive of subsequent cancer incidence in large 
prospective studies. CA analysis provided a relative risk (RR) of 1.41, with a 
95% confidence interval (CI) of 1.16-1.72 (32), whereas MN had a RR of 1.53 
(95%CI: 1.04-2.25) (33), both of which are statistically significant. In these 
studies, it is not the particular genes, but the ease of traversing a standard 
carcinogenic pathway, that defines cancer risk (34). A related technique, 
quantitative analysis of induced chromosome breakage (also called “mutagen 

sensitivity”) (35), has been applied retrospectively to patients with a number 
of cancer types and has produced significant odds ratios that might suggest 
it would also be predictive for cancer (Table 2). These chromosomal analyses 
are available in most children’s hospitals, because they are the laboratory 
diagnostic standard for the cancer-prone hereditary syndrome Fanconi 
anemia (41,42) and a comprehensive protocol for quantitative induction 
of chromosome damage with a number of agents has also been recently 
been published (43). Blood-based somatic mutation at the HPRT and GPA 
reporter genes (Table 3) has also been associated with cancer incidence in 
retrospective studies (44). Odds ratios based on studies using these methods 
are given in Table 4. Cut-off values were determined as approximately 3 
standard deviations above the mean of the control population. Note that 
for the GPA assay, this is similar to the criteria applied as diagnostic for the 
cancer-prone diseases ataxia telangiectasia (64) and Fanconi anemia (65). 
These odds ratios also suggest these assays might be useful in a population 
screen to identify individuals at increased risk for cancer. Both of these assays 
have been in use experimentally for over 30 years and protocols for these 
procedures have also recently been published in detail (66,67). Population 
studies with the GPA somatic mutation assay have shown that the incidence of 
high mutation frequency “outliers,” perhaps indicative of the development of 
genomic instability in bone marrow stem cells, rises exponentially beginning 
at age 45 (68). Notably, this parallels the age of incidence of many solid 
tumors (69). Perhaps acquisition of genomic instability is the defining step 
in carcinogenesis, when development of a fully transformed cell becomes 
inevitable? Population screening and monitoring via application of one or 
more of these assays of the arrow of carcinogenesis should become a regular 
part of the evaluation of disease risk in asymptomatic human beings, rather 
than wait for the development of overt cancer.

TABLE 2 
Association of elevated mutagen sensitivity (induced chromosome aberrations) with cancer

Cancer type Inducing agent Odds Ratio
(95% Confidence Interval) References

Lung Benzo[a]pyrene diol epoxide
Bleomycin

2.15 (1.39-3.33)
2.69 (1.44-5.04)

(36)
(37)

Head and neck Benzo[a]pyrene diol epoxide 1.56 (1.27-1.91) (38)
Breast Bleomycin 2.8 (1.7-4.5) (39)

Melanoma 4-nitroquinoline-1-oxide 1.78 (1.12-2.84) (40)

TABLE 3
The HPRT and GPA in vivo somatic mutation assays

Features Events detected

HPRT

Well-established assay, with extensive normal database
Applicable to everyone except patients with Lesch-Nyhan syndrome 

(hereditary deficiency of HPRT)
~20 mL of fresh blood required

Expensive and labor-intensive: requires cell culture and clonogenic drug 
selection

Mutant colonies can be genetically analyzed: generate “mutational spectra”
Comparable in vitro, animal versions

Gene-specific mutation1

Structural mutation to inactivity

Regulatory mutation to non-expression

Mutation affecting mRNA processing or stability
Epigenetic inactivation

Gene deletion
Translocation/inversion/insertion

Disruption of integrity of gene

GPA

Well-established assay, with extensive normal database
<1 mL of fresh blood required

Inexpensive and rapid: direct flow cytometric detection of mutants
Mutant phenotype cannot be conformed at the DNA level

Resolution of mutants with allele-loss and loss-and-duplication phenotypes
Loss-and-duplication phenotype can be resolved only in GPA (MN) 

heterozygotes (~50% population)

Mutation

Structural mutation to inactivity

Regulatory mutation to non-expression

Mutation affecting mRNA processing or stability
Epigenetic inactivation

Gene/chromosome deletion
Translocation/inversion/insertion

Disruption of integrity of gene, position effects
Chromosome loss

Chromosome loss and duplication
Mitotic recombination

Gene conversion
1Due to location on X chromosome, limited ability to detect extragenic mechanisms
Updated and expanded from (34)
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