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The fundamental reformulation of the concept of a weak solution 
to the navier-stokes problem

Jiří Souček 

INTRODUCTION 

n this paper the regularity of initial and boundary conditions for 
the Navier-Stokes (NS) problem will be assumed.  

The aim of this paper consists in the realization of following steps 
(i) The division of the NS equations into two parts: the

evolution part and the determinant part (expressing the
volume conservation of the flow)

(ii) The analysis of the insufficient (and incomplete)
formulation of the determinant part (i.e. of the equation
div u = 0)

(iii) The introduction of the concepts of the generalized flow
and of the homological conditions

(iv) The definition of the weak differentiability of the
generalized flow and the definition of the associated
velocity field to a given weakly differentiable generalized
flow

(v) The definition of the concept of the complete weak
solution to the NS problem, i.e. the fundamental
reformulation of the standard weak formulation of the NS
equations

(vi) The formulation of the existence and regularity conjectures
for the complete weak solution to the NS problem.

In conclusion we can characterized our approach in general in the 
following terms: 
We have combined two different parts of analysis 

(i) The standard analysis of NS equations, used in the
evolution part

(ii) Geometric measure theory extended to the theory of
Cartesian currents, homology conditions, weak 
diffeomorphisms etc. used in the determinant part of the
NS problem

The resulting theory has a substantially richer structure than the 
standard analysis of NS equations and this gives a hope to arrive at a 
regularity. Especially the homology conditions (and their 
consequence–the weak convergence of determinants) can give the 
new input into the analysis of the NS problem. (On the other hand, 
the property of the weak convergence of determinants is necessary for 
the “right” solution to the incompressibility  problem). 
The organization of the paper is following. In sect. 2 we analyze the 
two objections to the standard concept of the weak solution to NS 
equations. In sect. 3 we describe the basic concepts and facts from the 
theory of Cartesian currents, weak diffeomorphisms, homology 
conditions etc. In sect. 4 we introduce the key new concepts: the 
generalized flow, its weak derivative, its associated velocity field. In 
sect. 5 we introduce the reformulation of the NS problem, the 
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ABSTRACT 
At first we identify the main error in the formulation of the 
concept of the weak solution to Navier-Stokes (NS) equations 
which is the completely insufficient treatment of the 
incompressibility condition on the fluid (expressed in the standard 
way by div u = 0). The repair requires the complete reformulation 
of the NS problem. The basic concept must be the generalized 
motion (i.e. the generalized flow) which replaces the standard 

velocity field. Here we define the generalized flow on the bases of Geometric 
measure theory extended to the theory of Cartesian currents and weak 
diffeomorphisms [1-2]. Then the key concept of the complete weak solution to 
the NS problem is defined and the two conjectures (the existence and the 
regularity ones) concerning the complete weak solutions are formulated. In 
two appendices many technical details are described (concerning e.g. Cartesian 
currents, homology conditions, weak diffeomorphisms, etc.). Our approach is 
based on the unification of the standard analysis of NS equations with the 
methods of Geometric measure theory and of the theory of Cartesian currents. 
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concept of the complete weak solution and the two basic conjectures. 
Then there is a discussion and conclusions. In App. A there is a 
detailed definition of graph-current and of homology conditions. In 
App. B we describe one variant of the definition of the standard weak 
solution to the NS equations which is used in this paper. 

Two critical objections to the standard concept of the weak solution 
to the Navier-Stokes equations 
The concept of the weak solution to the Navier-Stokes (=NS) 
equations has two problematic points which will be analyzed in this 
section. 
The first objection consists in the fact that the NS equations are the 
mixture of two different parts: 

(i) The standard evolution equation for the velocity field
(ii) The (non-evolution) volume-preserving constraint

containing the problem with determinants of the motion
of the fluid.

These two parts are completely different in character and we assert 
that part with determinants is (when considered in a standard way) 
treated in a wrong and insufficient way. 
The standard treatment of the volume-preserving condition is 
expressed as the divergence equation div u(x, t) = 0 (for a.e. t, 0 ≤ t ≤ 
T and a.e. x ∊ Ω ) where u is a velocity field. But it is known from 
that the correct treatment of determinants requires to take into 
account the homology properties of maps describing the motion of a 
fluid [1-2]. 
Thus the correct formulation of the NS problem requires the 
following 

(i) To consider the standard weak solution to the NS
equations

(ii) To complement the treatment of the volume-preserving
constraint in a way reflecting the necessary homology
properties of maps describing the weak flow of the fluid.

To realize this program it is necessary 
(i) To define the concept of the generalized (i.e. weak) flow, 

i.e. the semigroup of weak diffeomorphisms [2].
(ii) To define what is the weak (time) derivative of this weak 

flow (i.e. the velocity field). 
(iii) To define what is the volume-preserving weak flow.

This will be done in the section 4. 
Then it is necessary to reformulate the NS problem in terms of the 
weak flow (i.e. in the terms of the generalized motion of the fluid) 
instead of the standard formulation in terms of the velocity field (i.e. 
in the form of NS equations for the velocity field). This will be done 
in the section 5 where the basic concept of the complete weak 
solution to the NS problem is defined. 

The second objection to the concept of the standard weak solution to 
the NS equations consists in the fact that this solution is not, in 
general, the solution of the original NS problem, i.e. to find the 
(possibly generalized) motion of the fluid. 
In the situation where the velocity field is not smooth, it is known 
that, in general, the corresponding flow is not uniquely defined and 
thus the motion of the fluid is not uniquely defined by the velocity 
field. (In the situation when the velocity field is smooth, the 

corresponding flow is uniquely defined).  
Thus the weak solution to the NS equations does not create the weak 
solution to the original NS problem. 

As a conclusion we arrive at following facts 
(i) The treatment of the volume-conservation condition in the

standard definition of the weak solution to the NS
problem is insufficient

(ii) The weak solution to the NS equations is not, in general,
the solution to the NS problem (in fact, it is necessary to
introduce the concept of the complete weak solution using
the concept of the generalized flow).

The basic concepts for problems with determinants: Cartesian 
currents, weak diffeomorphisms, homology conditions, the weak 
convergence of determinants 
Let us fix the bounded simply connected domain Ω ⊂ R3 with the 
smooth boundary. 

Notation 1 
We shall consider a copy R3ˆ of R3 and Ωˆ ⊆ R3ˆ where Ωˆ is 
isomorphic to Ω (Ωˆ is a copy of Ω in R3ˆ). We shall denote 
coordinates in R3 by (x1, x2, x3) and coordinates in R3ᶺ by (y1, y2, y3). 

The graph GU of the map U is defined as a 3-dimensional current in 
R3 ⤬ R3ᶺ [1]. Its meaning is the integration of the differential 3-form 
over the graph GU of U (the explicit definition of the graph-current 
GU can be found in App. A below).   

The Sobolev map U ∊ W1,1(Ω, R3ᶺ) is called a Cartesian map (as a 
special case of Cartesian currents) if 2 x 2 minors of DU and detDU 
are integrable functions and the associated graph-current GU is 

homologically closed, ∂GU = 0, (i.e. ∂GU(ω) = GU(dω) = 0 for 

each 2-form ω compactly supported in Ω ⤬ R3ˆ). We assume 
moreover that U satisfies the Lusin’s condition (i.e. |U(A)| = 0 if 
|A| = 0), where |.| denotes the Lebesgue measure in R3). 

The set dif1,1,vc (Ω, Ωˆ) of weak volume-preserving diffeomorphisms in 
Ω is defined as following (vc = volume-preserving). 

Definition 1 
The Sobolev map U ∈ W1,1 (Ω. R3ˆ) is in dif1,1,vc (Ω. Ωᶺ), i.e. U is the 
volume-preserving weak diffeomorphism on Ω if U satisfies the 
following conditions. 

(i) U(Ω) = Ωˆ a.e., i.e. |U(Ω) - Ωˆ| = |Ωˆ - U(Ω)| = 0. (Here
| . | denotes the Lebesgue measure in R3.)

(ii) There exists a Sobolev map Uˆ ∈ W1,1 (Ωˆ, R3) such that
Uˆ(U(x)) = x for a.e. x ∈ Ω and U(Uˆ(y)) = y for a.e. y ∈
Ωˆ - i.e. Uˆ is the a.e. inverse of U.

(iii) Both U and Uˆ satisfy the Luzin property, i.e. if |A| = 0
then |U(A)| = 0 (and |Uˆ(A)| = 0 for each A ⊆ Ωˆ,
|A|=0).

(iv) 2x2-minors M2x2DU are integrable functions and the same
is true for M2x2DUˆ

(v) The Jacobian detDU(x) = 1 for a.e. x ∈ Ω. 
Correspondingly detDUˆ(y) = 1 for a.e. y ∈ Ωˆ. 

(vi) The current GU = GˆUˆ is closed inside of Ω ⤬ Ωˆ in the
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sense of [1], i.e ∂GU = ∂GˆUˆ = 0 in Ω ⤬ Ωˆ. (i.e. 

GU(dω) = 0 for each smooth compactly supported 2-form 
ω on Ω ⤬ Ωˆ.) 

(vii) For each measurable subset A of Ω we have |U(A)| = |A|
and the same is true for Uˆ - i.e. the volume-conservation
for U and Uˆ is satisfied.

Remark 2 

The closeness ∂GU = 0 of the graph GU is the principal property of 

Cartesian currents and of weak diffeomorphisms. It is clear that this 
condition is weakly closed (i.e. it is passing through the weak limits) 
since it can be expressed as GU(dω) = 0 for each smooth 2–form ω 
compactly supported in Ω ⤬ Ωˆ. 
The map U conserves the orientation a.e. This follows from the 
condition (v). 

Remark 3 
In fact, the condition (iv) from the definition 1 (the integrability of 
minors) is superfluous since it follows from the other conditions from 
this definition. 

Proof 
2⤬2 minor of DU can be expressed as a derivative of Uˆ (Uˆ is an 

inverse map to the map U), M2x2(DU(x)) = M2x2DUˆ(y)/detDU(Uˆy), 

y = U(x). Since detDU = 1 a.e. we have M2x2(DU(x)) = DUˆ(y). The 
transformation from variables x onto variables y is governed by the 
property that detDU = 1 a.e. 

As a consequence we obtain that detDU (i.e. that the distributional 
determinant of DU) is represented by the function identically equal 
to 1 a.e. 

Homological conditions are defined as GU(dω) for each 2-form ω 
compactly supported in Ω ⤬ Ωˆ.  There are 3 types of forms ω’s 
depending on the number of differentials dy: 0, 1, 2. The details of 
the homological conditions are described in App. A, part 2. 

The weak continuity of determinants means that the weak 
convergence of DUk to DU implies the weak convergence of detDUk 
to detDU. This is the quite non-trivial but fundamental property. 
Without this property the variational problems with determinants 
cannot be solved. The weak continuity of determinants contains two 
properties (we assume that DUk converge weakly to DU) 

(i) detDUk are integrable functions and detDUk converges
weakly to some integrable function w

(ii) w = detDU

The property (i) is not connected directly to the homology conditions 
while the property (ii) is fundamentally based on homology 
conditions. The details of the weak continuity of determinants can be 
found in [2]. 
In general, the weak continuity of determinants is the central 
property for the solution of problems with determinants. 
Homological conditions are the true basis for proving the weak 
continuity of determinants. None of these properties are considered 
in the standard treatment of the NS equations and this is the main 
drawback (insufficient property) of the standard formulation of the 

weak solution to the NS equations. 

The new concepts: the generalized (weak) flow, its weak derivative 
and the associated velocity field 
At first we shall define the concept of a one-dimensional semi-group 
of weak diffeomorphisms which we shall denote as a weak (i.e. 
generalized) flow. 
Let  Ω ⊂ ℝ3  be a bounded open set in ℝ3 with a smooth boundary.    
Let U, V, W be weak diffeomorphism defined on Ω with values in Ω. 
We say that W is a composition of U and V (denoted as U ○ V) if for 
a.e. x ∊ Ω the relation V(U(x)) = W(x) is satisfied.

Let  {Urs}0≤r≤s≤T  be a set of weak diffeomorphisms defined on Ω with
values in Ω, T > 0.
Definition 1

The set  {Urs}0≤r≤s≤T  of weak diffeomorphisms will be called the weak
flow if the following conditions are satisfied

(i) Urr is an identity map on Ω for each 0 ≤ r ≤ T

(ii) For each 0 ≤ r ≤ s ≤ t ≤ T  the diffeomorphism Urt is the

composition of Urs and Ust, i.e.

Urt = Urs ○ Urs 

Definition 2 

The weak flow {Urs}0≤r≤s≤T  will be called the volume-preserving weak 

flow if for a.e. r and s the map Urs is the volume-preserving weak 
diffeomorphism. 
In the NS problem only such weak flows are considered which have 
an associated velocity field u(x, t) where x ∊ Ω, t ∊ [0, T]. The 
definition of the associated velocity field requires certain attention. 

Definition 3 

 We shall say that the weak flow  {Urs}0≤r≤s≤T  is weakly differentiable if 
there exists an L1-vector field u(x, t) ∊ R3, x ∊ Ω, t ∊ [0, T] such that 
for a.e. t, r, s ∊ [0, T], 0<t<r<s we have 

                    ( ,  ) 

ts tr rw
dx x U x dx x U x dx x dw U x wr w s           u

for each smooth function φ(x) on Ω. 
The vector field u(x, t) is then called the velocity field of the weak 

flow {Urs}0≤r≤s≤T (assuming that this weak flow is weakly differentiable). 

Remark 1 
It is clear that the velocity field is uniquely determined by the 
corresponding generalized flow (assuming that this flow is weakly 
differentiable). In fact, if we have for a.e. x ∊ Ω 

         ,  ,    1, 2
ts tr rwU x U x dw U x w kr w s k     u

where u1 and u2 are two possible velocity fields, then we obtain for 
a.e.  r < s and for a.e. x ∊ Ω that

       , – , 0.
1 2

rw rwdw U x t U x wr w s

 

 


  u u

Thus u1(y, w) = u2(y, w) for a.e. y ∊ Ω and a.e. w ∊ [t, T] since Urw(Ω) 
covers almost all of Ω for a.e. w. 
Let us remark that the inverse transformation from the velocity field 
to the weak flow is not, in general, uniquely defined. In fact, to a 
given (non-smooth) velocity field there may exist many corresponding 
weak flows. 

=
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Remark 2 
There is a question considering the integrability of the last integral in 
the Definition 3. Let us consider the following integral (Φ is a smooth 
function) 

   
1

’  ’ ’,  . 
rwdx dw U x x wr w s

 
 



   

  u

This integral is convergent since the function Φ((Urw)-1x’) is bounded 

and u is integrable. Then we can make a transformation  x’ = Urw (x) 
in the integral which is volume-preserving. We obtain 

      ,  . 
rwdx dw x U x tr w s     u

The reformulation of the NS problem: the concept of a complete 
weak solution to the NS problem and the two conjectures 
Our reformulation of NS problem is based on the concept of the 
complete weak solution to the NS problem. This new type of the 
weak solution to the NS problem is formulated using the weak flow 
as a primitive object instead of the velocity field. 

Definition 1 
Assume that the smooth initial and boundary data are given. 

We shall say that the weak flow {Urs}0≤r≤s≤T  is a complete weak 
solution to the NS problem if the following conditions are satisfied 

(i) The weak flow  {Urs}0≤r≤s≤T  is the volume-preserving weak
flow

(ii) The weak flow {Urs}0≤r<s≤T is weakly differentiable. Let u(x,
t) be the velocity field associated to this flow.

(iii) The velocity field u(x, t) is the standard Leray-Hopf (App.
B) weak solution to NS equations.

(iv) The (smooth) initial and boundary conditions for the
velocity field are satisfied.

The main novity in our approach is two-fold: 
(i) The standard central object – the velocity field is

substituted by the weak flow describing the (generalized)
motion of the fluid

(ii) The divergence equation div u = 0 is expressed by the
requirement of the volume-conservation of this weak flow. 
This allows (and requires) the use of the homology
conditions (and Cartesian currents, in general) which will
be new elements in the study of the NS problem. This new
input may enable us (possibly) to arrive at the statement
that the corresponding complete weak solution exists and
is smooth.

Thus we can state the following two conjectures. 

The Conjecture 1. (the existence conjecture). 
For each smooth initial and boundary conditions there exists a 
complete weak solution to the NS problem. 

The Conjecture 2. (the regularity conjecture). 
Each complete weak solution to the NS problem (assuming the 
smooth initial and boundary conditions) is such that its associated 
velocity field is smooth. 

We assume that the new input containing the homology conditions 
and the correct formulation of the volume-conservation condition 
make possible that these two conjectures will be true. 

Even in the situation where the regularity proof is not available but 
the Conjecture 1. Would be proved we obtain the strong advantage 
by having the complete weak solution to NS problem since it  gives 
the weak solution to the complete NS problem (i.e. it defines the 
weak motion of the fluid). 

DISCUSSION 
It is quite probable that the Conjecture 1. Is true since it is 
completely natural but this does not mean that the proof must be 
simple. 

On the other side, the Conjecture 2. Seems to be rather open. 

We have only an idea why the standard regularity conjecture should 
not be true: since the standard volume-preserving constrain (div u = 
0) is rather insufficient (i.e. it is not considering correctly
distributional minors and determinants). But this is not the argument
for the validity of the regularity of the complete weak solution. This
argument gives only the possibility of the regularity of the complete
weak solution to the NS problem.

In the study of NS problem the concept of the suitable weak solution 
was developed (see [4]). In this direction the concept of the volume-
preserving measurable map Φ : (0, T) x Ω → Ω is used. This map is 

somewhat analogous to our map U0t : Ω → Ω, t ∊(0, T) but there are 
strong differences: the map U0t is a weak diffeomorphism with well-
defined (weak) differentiability properties while the map Φ has no 
differentiability properties, it is only the measurable map which is 
moreover volume-preserving. Thus we think that the research 
concerning the suitable weak solution to NS equations (see [4]) is 
only in some small part connected to our approach. In some intuitive 
thought the map Φ can be considered as something as “weak 
homeomorphisms” in contrast with the “true” weak diffeomorphisms 

U0t. On the other hand there are many strong results obtained for 
suitable weak solutions [4]. 

Then we formulate two basic conjectures 
a. The existence conjecture: for smooth data the

complete weak solution exists
b. The regularity conjecture: (assuming smooth

initial and boundary data) the velocity  field
associated to the complete weak solution is
regular

In two appendices technical parts concerning Cartesian currents, 
homological conditions and existence of the standard weak solutions 
to NS equations the situation is explained in more details. 

Appendix A 
In this section we describe in more details the definition of the graph-
current GU and the intuitive content of homology conditions. Also 
the weak continuity of determinants is discussed. 

1. The detailed description of the graph-current GU. 



The fundamental reformulation 

J Pure Appl Math Vol 7 No 3 May 2023 

To each map U with integrable minors of its Jacobi matrix we can 
define the corresponding  3-dimensional current GU in the space ℝ3 ⤬ 
ℝ3ᶺ (here ℝ3ᶺ is the copy of ℝ3). 

We shall use the following useful notation (useful only in ℝ3) 
1’=2, 1’’=3, 2’=3. 2’’=1, 3’=1, 3’’=2,         ∂x = ∂/∂x 

in our formulas. The indexes i. j. .. α, β, .. will take values in {1, 2, 3}. 

At first we have to classify 3-forms in ℝ3 where x1, x2, x3 will be 
coordinate variables in ℝ3 and y1, y2, y3 will be coordinates in ℝ3ᶺ. The 
3-form φ can be decomposed as φ = φ0 + φ1 + φ2 + φ3, where

φ0 = a0 (x, y) dx,   dx = dx1 ∧ dx2 ∧ dx3 
φ1 = Σ bα

i (x, y) dxi’ ∧ dxi’’ ∧ dyα 
φ2 = Σ cβ

 j (x, y) dxj ∧ dy β’ ∧ dy β’’ 

φ3 = a3 (x, y) dy1 ∧ dy2 ∧ dy3. 

The graph-current GU is defined as an integration of the 3-form φ 
over the graph of U. Thus we obtain (assuming that the map U is 
smooth) 

GU (φ0) = ∫Ω a0 (x, U(x)) dx 

GU (φ1) = Σ ∫ bα
i (x, U(x)) dxi’ ∧ dxi’’ ∧ ∂xkU

α(x) dxk = Σ ∫ bα
i (x, U(x)) 

∂xiU
α(x) dx 

GU (φ2) = Σ ∫ cβ
j(x, U(x)) dxj ∧ ∂xmUβ’(x) dxm ∧ ∂xkU

β’’(x) dxk 

= Σ ∫ cβ
j(x, U) dxj ∧ [∂xj’U

β’ dxj’ ∧ ∂xj’’U
β’’ dxj’’ + ∂xj’’U

β’ dxj’’ ∧ ∂xj’U
β’’ 

dxj’] = Σ ∫ cβ
j(x, U) [∂xj’U

β’ ∂xj’’U
β’’ - ∂xj’’U

β’ ∂xj’U
β’’] dxj ∧ dxj’ ∧ dxj’’=  

= Σ ∫ cβ
j(x, U(x)) Mβ’,β’’

j’,j’’(DU(x)) dx 

GU (φ3) = Σ ∫ a3 (x, U(x)) ∂xiU1(x) dxi ∧ ∂xjU2(x) dxj ∧ ∂xkU3(x) dxk  

= Σ ∫ a3 (x, U) ∂xiU1 ∂xjU2 dxj ∂xkU3 εijk dx = ∫ a3(x, U(x)) detDU(x) 
dx. 

In the situation where U is a Sobolev map from W1,1 (Ω) with the 
integrable minors of the Jacobi matrix, we define the graph-current 
GU by the formula described above (i.e. by the same formula as in the 
regular case).   

Homology conditions      
The general form of homology conditions is expressed by ∂GU(ω) = 

GU(dω) = 0, where ω is any compactly supported 2-form in Ω ⤬ ℝ3ᶺ. 
In this subsection we analyze the content of homology conditions in 
details. 
The 2-form ω can be expressed as a sum of the following 2-forms 
ω0

i = f(x, y) dxi’ ∧ dxi’’,  i ∊ {1, 2, 3} 
ω1,α 

j = g(x, y) dxj ∧ dyα ,    α, i ∊ {1, 2, 3} 
ω2,β = h(x, y) dyβ’ ∧ dyβ’’ .  β ∊ {1, 2, 3} 

Then we obtain  
dω0

i = ∂xif(x, y) dxi ∧ dxi’ ∧ dxi’’ + Σα ∂yαf(x, y) dyα ∧ dxi’ ∧ dxi’’ , 
dω1,α 

j = ∂xj’g(x, y) dxj’ ∧ dxj ∧ dyα
  + ∂xj’’g(x, y) dxj’’ ∧ dxj ∧ dyα

  + 
∂yα’g(x, y) dyα’ ∧ dxj ∧ dyα  + ∂yα’’g(x, y) dyα’’ ∧ dxj ∧ dyα     
dω2, β = Σk ∂xkh

β(x, y) dxk ∧ dyβ’ ∧ dyβ’’ + ∂yβhβ(x, y) dyβ ∧ dyβ’ ∧ dyβ’’   . 

The application of the Cartesian current GU onto the 3-form dω gives 
the rather complication expression, so that we choose the special 
form of 2-forms ω’s 
ω0,γ 

i =φ(x) yγ dxi’ ∧ dxi’’,  i, γ ∊ {1, 2, 3}  i, γ ∊ {1, 2, 3} 
ω1,α,γ 

j = φ(x) yγ dxj ∧ dyα ,   α, γ, i ∊ {1, 2, 3} α, γ, i ∊ {1, 2, 3} 
ω2,β,γ = φ(x) yγ dyβ’ ∧ dyβ’’ .  β, γ ∊ {1, 2, 3} β, γ ∊ {1, 2, 3} 

Then we obtain 

dω0,γ 
i = ∂xiφ(x) yγ dxi ∧ dxi’ ∧ dxi’’ + φ(x) dyγ ∧ dxi’ ∧ dxi’’ 

dω1,α,γ 
j = ∂xj’φ(x) yγ dxj’ ∧ dxj ∧ dyα + ∂xj’’φ(x) yγ dxj’’ ∧ dxj ∧ dyα + φ(x) 

dyα’ ∧ dxj ∧ dyα δγα’ + φ(x) dyα’’ ∧ dxj ∧ dyα δγα’’ . 
dω2,β,γ = Σ ∂xkφ(x) yγ dxk ∧ dyβ’ ∧ dyβ’’ + φ(x) dyβ ∧ dyβ’ ∧ dyβ’’ δγβ . 

Then applying the graph-current GU to these forms we obtain 
GU(dω0,γ 

i) = ∫ ∂xiφ(x) Uγ(x) dxi ∧ dxi’ ∧ dxi’’ + φ(x) ∂xiU
γ dxi ∧ dxi’ ∧ 

dxi’’ = ∫[∂xiφ(x) Uγ + φ(x) ∂xiU
γ] dx = ∫∂xi[φ(x) Uγ] dx = 0  

This defines the distributional derivative of Uγ. Then we have 
GU(dω1,α,γ 

j) = ∫ ∂xj’φ Uγ dxj’ ∧ dxj ∧ ∂xj’’U
α dxj’’+ ∂xj’’φ Uγ dxj’’ ∧ dxj ∧ 

∂xj’U
α dxj’ + φdxj ∧ [(∂xj’U

α’ dxj’ + ∂xj’’U
α’ dxj’’)] δγα’ ∧ [(∂xj’U

α dxj’ + 
∂xj’’U

α dxj’’)] + φdxj ∧ [(∂xj’U
α’’dxj’ + ∂xj’’U

α’’dxj’’)] δγα’’  ∧ [(∂xj’U
α dxj’ + 

∂xj’’U
α dxj’’)]  

= ∫[∂xj’φ Uγ ∂xj’’U
α

 (-1) + ∂xj’’φ Uγ ∂xj’U
α]dx + φ δγα’ [∂xj’U

α’
 ∂xj’’U

α
  - 

∂xj’’U
α’ ∂xj’U

α] + φ δγα’’ [∂xj’U
α’’

 ∂xj’’U
α

  - ∂xj’’U
α’’ ∂xj’U

α] dx  

= ∫ Uγ [∂xj’’φ ∂xj’U
α - ∂xj’φ ∂xj’’U

α]dx + φδγα’M α’,α 
j’,j’’(DU)dx + φδγα’’M

α’’,α 
j’,j’’ (DU)dx 

Here the only interesting homology conditions are those which 
contain minors of different order – i.e. where δγα’ or δγα’’  are 
nonzero – i.e. where γ=α’ or γ=α’’. In this way we obtain two 
homology conditions 

(i) GU(dω1,α,α’ 
j) = ∫Uα’[∂xj’’φ ∂xj’U

α - ∂xj’φ ∂xj’’U
α] dx + φ M α’,α 

j’,j’’(DU) dx
(ii) GU(dω1,α,α’’ 

j) = ∫Uα’’[∂xj’’φ ∂xj’U
α - ∂xj’φ ∂xj’’U

α] dx + φ M 

α’’,α 
j’,j’’(DU) dx 

Both expressions must be equal to zero and this gives the 
distributional definition of 2 x 2 minors of DU in terms of DU. 
GU(dω2,β,γ) = ∫ Σ ∂xkφ Uγ dxk ∧ [∂xk’U

β’ dxk’ + ∂xk’’U
β’ dxk’’] ∧  [∂xk’U

β’’ 

dxk’ + ∂xk’’U
β’’ dxk’’] + φ Σ ∂xiU

β dxi ∧ ∂xjU
β’dxj ∧ ∂xkU

β’’dxk δγβ = ∫ Σ 
∂xkφ Uγ [∂xk’U

β’ ∂xk’’U
β’’ - ∂xk’’U

β’ ∂xk’U
β’’] dx + φ Σ ∂xiU

β ∂xjU
β’

 ∂xkU
β’’ 

εijk dx δγβ . 

This condition is non-trivial only when δγβ = 1 (i.e. γ=β) and in this 
case it gives the distributional definition of the determinant of DU 
using 2 x 2 minors of DU. 
GU(dω2,β, β) = ∫ Σ ∂xkφ Uβ Mβ’,β’’ 

k’,k’’(DU) dx + φ detDU dx = 0 . 
In the NS problem we have detDU = 1 a.e. (i.e. the volume-
conservation) and thus the last equation is the condition required for 
2 x 2 minors of DU. 

Appendix B 
The explicit definition of the standard weak solution to the NS 
equations will be described in this section, all statements in this 
appendix are standard and we take them from [3].  

We shall use the formulation and the existence theorem of the 

standard weak solution to the NS equations from the recent paper 
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[3]. For the formulation of the NS problem some function spaces 
must be used [3]. More details can be found in [3]. 

At a start we shall define spaces with zero divergence used here. Let Ω 
be a bounded domain in R3 with the Lipschitz boundary. 

The basic space L2
0,div(Ω) is defined as a closure of the space  {u ∈ (C

∞0(Ω))3 ; div u = 0} in the L2 norm (2.3.3) [3]. 

The analogous Sobolev space is defined by ([3], 2.3.2) 

W1,2
0,div(Ω) = {u ∈ (W1,2

0 (Ω))3 ; div u = 0} 

and its dual space (W1,2
0,div(Ω)* is defined in the standard way. If f ∊ 

(W1,2
0,div(Ω)* and u ∊ W1,2

0,div(Ω), then the duality between f and u 
will be denoted by f [u]. 
The Bochner spaces are used. Let I = (0, T) be a finite interval on the 
time axis and let X be a Banach space. We shall say that the function f 
: I →X is a simple function if there exists a measurable 
decomposition {O1, .. , Ok} of an interval I such that f is constant on 
each Oi. A function f: I → X is called strongly measurable if there 
exists a sequence of simple functions fn such that limn→∞ ||fn(t) − 
f(t)||X = 0 for a.e. t ∈ I. Then we define the Bochner space L1(I; X) as 
a set of all strongly measurable functions f : I →X such that the 
function ||f(.)||X is integrable over I [3].   
Analogously, the Bochner space L2(I, X) is defined as a set of all 
functions f ∊ L1(I; X) such that (||f(.)||X )2 is integrable over I and the 
Bochner space L∞(I, X) is defined as a set of all functions f ∊ L1(I; X) 
such that ess sup ||f(.)||X is bounded over I [3]. 

Bochner spaces will be used only when X is L2
0,div(Ω) or W1,2

0,div(Ω) or 
(W1,2

0,div(Ω))*. More details on useful function spaces can be found in 
[3]. 

Now we are ready to formulate the concept of the standard (Leray-
Hopf) weak solution to the NS equations. We shall call this weak 
solution a standard weak solution since we have introduced above a 
new concept of a complete weak solution to the NS problem. [3]. 

Let f ∈ L2(I; (W1,2
0,div(Ω))*), u0 ∈ L2

0,div(Ω). 

The function u ∈ L2(I; W1,2
0,div(Ω)) ∩ L∞(I; L2

0,div(Ω)) with ∂u/∂t ∈ 
L1(I; (W1,2

0,div(Ω))*) is called a standard (Leray-Hopf) weak solution to 
the Navier–Stokes equations if 

(i) ∂u/∂t[ϕ] + ∫Ω(u · ∇u)·ϕ dx + ν ∫Ω ∇u:∇ϕ dx = f[ϕ] , ∀ϕ ∈ 

W1,2
0,div(Ω) and a.e. t ∈ I,

(The evolution equation for the velocity field; here ν 
denotes the viscosity.)

(ii) limt→0+ ∫Ω u(t, ·) · ϕ dx = ∫Ωu0 · ϕ dx , ∀ϕ ∈ L2
0,div(Ω). 

(Initial conditions.)
(iii) ∫Ω |u(t)|2 dx + 2ν ∫(0,t) ∫Ω |∇u|2 dx dτ ≤ ∫Ω |u0|2 dx + 2

∫(0,t) f[u] dτ   for a.e. t ∈ I.
(So-called energy inequality.)

Then in the existence of the standard (Leray-Hopf) weak solution to 
the NS equations is proved. 

CONCLUSIONS 
As a conclusion we can consider the following definitions and 
findings 

a. The NS problem must be divided into two
parts: the evolution part and the determinant 
(incompressibility and non-evolution) part

b. The determinant part is in the standard way
treated in a wrong and insufficient way  (i.e. by
the condition div u = 0)

c. The right treatment of the determinant part
must be based on methods from the Geometric
measure theory and from the theory of
Cartesian currents consider weak
diffeomorphisms, homology conditions and
other concepts from this theory).

d. Our approach is based on the union of two
rather different parts of real analysis: the theory
of NS equations and the Geometric measure
theory extended to the theory of Cartesian
currents

e. This approach requires the change of the basic
object of the study: the velocity field must be
replaced by the weak (i.e. generalized) flow
which is a semigroup of weak diffeomorphisms .

f. The weak differentiability of the weak flow must
be carefully defined and also the velocity field
associated to the weak flow must be defined in a
unique way

g. The (hidden) main problem stays in the fact
that in the situation when the velocity field is
not smooth then the corresponding weak flow
can be non-unique and can be also non-existent 

h. The NS equations are reformulated in a
completely new way based on the concept of a
weak flow

i. The central concept of the complete weak
solution to the NS problem is defined
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