RESEARCH

The gaps between primes

Shi L. The gaps between primes. ] Pure Appl Math. 2024;
8(3):01-12.

ABSTRACT
It is proved that:

e  For any positive integer d, there are infinitely many
prime gaps of size 2D.

e Every even number greater than 2 is the sum of two prime
numbers. Our method from the analysis of distribution
density of pseudo primes in specific set is to transform them
into upper bound problem of the maximum gaps between
overlapping pseudo primes, then the two are essentially the

same problem.
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INTRODUCTION

he number theory, Polignac's conjecture was made by Alphonse
de Polignac in 1849 and states:

For any positive even number n, there are infinitely many prime gaps
of size n. In other words: There are infinitely many cases of
two consecutive prime numbers with difference n. The case n=2, it is
the twin prime conjecture.

Although the conjecture has not yet been proven or disproven for any
given value of n, in 2013 an important breakthrough was made by
Zhang Yitang who proved that there are infinitely many prime gaps of
size n for some value of n <70; 000; 000. Later that year, James
Maynard announced a related breakthrough which proved that there
are infinitely many prime gaps of some size less than or equal to 600.
As of April 14, 2014, one year after Zhang's announcement, according
to the Polymath project wiki, n has been reduced to 246. Further,
assuming the Elliott-Halberstam conjecture and its generalized form,
the Polymath project wiki states that n has been reduced to 12 and 6,
respectively [1-4].

Goldbach's conjecture is one of the oldest and bestknown unsolved
problems in number theory and all of mathematics. It was proposed by
the German mathematician Christian Goldbach in a letter to
Leonhard Euler on 7 June 1742. It states that every even whole number
greater than 2 is the sum of two prime numbers. The conjecture has
been shown to hold for all integers less than 4 x 10'®) but remains
unproven despite considerable effort [3].

In this paper, we will prove the above two conjectures.
Theorem 1
For any positive integer d, there are infinitely many prime gaps of

size 2D.

Theorem 2
Every even number greater than 2 is the sum of two prime numbers.

Here is a brief introduction to the main ideas of proofs.

In the study of @ + b problems, the P, (x,z) type sieve function is
commonly used. Since Brun obtained 9 + 9, many research results on
a+ b type propositions have corresponding forms of twin prime
number problem. For example, the Brun-Buchstab sieve method for
deriving the 5 + 5 problem can also be used to prove with almost the
same complexity that there are infinite positive integers n such that the
number of prime factors for n and n + 2 does not exceed 5. But the
complexity of these two problems shows a significant difference when
the Selberg sieve is used to estimate the upper bound of B, (x,z). At
this point, the two problems can be linked together through the
monotonic principle in the sieve method.

The abstract form of the sieve method is usually referred to as

S(AP) = A\ U Ay,

Where A is a set of integers, P is a set of prime numbers, and A, is a
subset of all elements in A that can be divisible by P. It is easy to see
from the Inclusion-Exclusion Principle that

#S(A,P) = ) (~D)*HA,,
ocP

For any subset Q of P,

Ag = N A,
0= Ay

It can be seen that the sieve method is essentially calculating the
number of remaining elements in the Difference of a set and the
Union. The basic problem of the sieve method is to estimate the upper
bound and positive lower bound of the sieve function (if any).

In typical scenarios, the modern definition of the sieve function is

S(A,P,z) :={a € A: Vp|P(2), p t a},
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where

P@ =] [p-
PEP
p<z

It is easy to see that

#SAPD= Y 1,
a€A
(apP(@)=1

That is to calculate the number of elements in A that are coprime with
P (3). So, when using the sieve method to study twin prime numbers
and the Goldbach problem, that is A = {i(i — 2): i < w}and A =
{iw=-10):i<w}h

The form of the sieve function on a continuous interval will be like

S(0,P;P):={0<a<P: (aP) =1}

where
-
PEP

P is composed of the first n odd prime numbers

P :={p vP 20 3P n}

When n is sufficiently large, for any positive integer d, if hand h —d are
both elements of § (0, P ; P ), then there must exist two odd
numbers g1 and q2 in S (0, P ; P ) that are coprime with P and with a

gap of size 2d, such as:
q 1=2h—-P ,
q ,=2(h—d )-P .

It is easy to know that a sufficient condition for ¢q; and g2 to be prime
numbers is that their values are both on the interval [p , ,p %+

2p nl
Defining product functions

v(a) = | | p.
pPEP
a=0(p)va=d(p)
Then, for the problem of the gap between prime numbers, there is a
sieve function that removes multiple congruence classes

$,(0,P;P,v(@)):={0<a<P: (w(a),P) =1}

In this way, the problem of the gap between two prime numbers is
transformed into the problem of the distribution of elements in the S,
sieve. Considering the gap between adjacent elements in Sysieve, if the
maximum gap between adjacent elements in S, sieve is not greater

2
p . .
than —2", then there must be at least one element h*in S, sieve, so that

the values of g; = 2h* — P and q5 = 2(h* — d) — P are both within
the interval [py,, p2 + 2p,].

The problem of the sum of two prime numbers is similar. Simply
replace the (h — d)in the g2 expression with (d — h), and replace -P
with +P, then we can obtain that the two elements q: and q: satisfy

2

g1 + g, = 2d. But this constraint is more stringent on the maximum
gap between adjacent elements in S, to ensure that such a prime pair
always exists continuously for any d.

So we unified the sum of prime numbers problem and the gap between
prime numbers problem into the minimum upper bound problem of
the gap between adjacent elements in the S, sieve.

Certainly, we can also describe this same problem in a more intuitive
set form.

For any positive integer d, take a sufficiently large prime p,,, where p,
is the n-th odd prime [1].

Let the set H denotes all integers without factor p 1, D 2,**, P n s.
H={h:(vp €{p ,p 2,0 D@ tIrD} (1)

For any element h belongs to H, if (h — d) also belongs to H, there
must be two odd pseudo primes q; and g, with a gap of size 2d
belonging to H, such as [3].

g1 =2h—T,
q;=2h—-d)-T,

Where

T = l_[ p.
PE{p1,P2,Pn}

Then the sufficient condition for them to be real prime numbers is in
the domain [py,, p2 + 2p,].

Let H* be the set of overlapping pseudo primes, composed of all
elements that meet the above conditions [4].

H*={h: he HA (h—d) € H}.

Now let's consider the gaps between adjacent elements belong to H*.
Obviously, if the maximum gaps between adjacent elements belong to

2
H* are less than %", there will be at least one element h* belongs to H,

so that g; and g5 are both in the domain [py, pZ + 2p,], because the
range is greater than pZ.

The case of sums of primes is similar, except that (h — d) will be
replaced by (d —h)and the condition of maximum gaps between

2
adjacent elements belong to H* must be less than p?".

Therefore, the core of this proofs is that the upper bound of the
maximum gaps between overlapping pseudo primes must be less

2
than%"‘ By estimating the maximum length of consecutive elements in

the complement set of H*, we will prove that it holds when p,, is
greater than 2096.

Remark 1
1. In other words, as long as d is sufficiently small, such as
d =1, then p,, can be arbitrary. Actually, p,, > 2d will
be enough.

2. For example, forp, =5 H={..., 4,-2,-1,1,2,4,7,8,
11,13, 14, 16, 17, ... Ja.

3. pseudo prime means that it contains no factors
P1, D2, Pn-
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4. overlapping pseudo prime means that element h and its
corresponding element (h — d) are both pseudo primes
in set H.

NOTATION AND DEFINITIONS
Notation.
a, b, c, d hij k mn q t w u integers.
p: a prime number.
Dy: the t-th odd prime number p;=3, p,=5, etc.
a | d means a is a divisor of d.
a t d means a does not divide d.
X: variable.
|x] means the largest integer which does not exceed x.
[x] means the least integer not less than x.

$\dbinom{d}{a}$ means d choose a; the binomail coefficient

A: an abstract field for function parameter.

Z: the field of integers.

M°: the base set of p1, P2, ***, P

M;: infinite set generated by elements of M® with offset i.
My ; means M; U M.

Ala, b) means A N [a, b).

|A| denote the cardinality of set A.

A(A, d): generate a new set by adding d to each element of set A.
T(a): product function.

x(a,A): use 0 or 1 to indicate whether a belongs to A.
A(d): the von Mangoldt function.

0(x): the first Chebyshev function.

P (x): the second Chebyshev function.

(ay,a;,as,+++), (---): ordered arrays.

p((al, az, )), 19(( )) custom functions for lemma declaration.
,u((al, as, ), m): a custom function for proving lemma.
J), K (p), S(w): custom functions for proving lemma.
0(x): a custom function, we will prove that it is less than 1.
7: used to denote the gaps of overlapping pseudo primes.
L;(a,t): used to estimate.

T, H': custom sets.

v(Hy, Hy, -+ ): defined to assist in estimating L;(a, t).
(f(x))' means f'(x), that is the derivative of f(x).

eXp{-~- }: exponential function.

inf{:-- }: greatest lower bound.

sup{-++ }: least upper bound.

Definition 1
Forn>1,

M° = {p1,p2,, Pn}-

Definition 2
For any i,

M; = kLEJZ {km+i}.

meM°

Definition 3
For any i and j,
Miuj = Mi U M]

Definition 4
Let A be the function, defined by

AAd)={mim=a+dAa €A}

Definition 5
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d!
al(d—a)!

The gaps between primes

For any a,
r@=[]m-a.
meM°

Definition 6
Let the function y be given by

1 ifa € A,
x(a,A) =10 otherwise.

Definition 7
The von Mangoldt function A is defined by

Inp ifd=pFAk>1,
A(d) =40 otherwise.

The unique factorization property of the natural numbers implies

Ind = Z A(a),

The sum is taken over all integers a that divide d.

Definition 8
The first Chebyshev function 8(x) is defined by

0(x) = Z Inp,
psx
Where the sum is over primes p < x.

Definition 9
The second Chebyshev function ¥(x) is defined similarly

P = > =) A@,
KEN pk<x dsx
With the sum extending over all prime powers not exceeding x.

LEMMAS
In this section we introduce a number of prerequisite results, some of
them given here may not be in the strongest forms, but they are
adequate for the proofs of Theorems 1 and 2.

Lemma 1

Vi D(M; =AM, j—10) ).

Proof
By Definition 2 and Definition 4, we obtain
M, = kLer {km + j}
meM°
= kLEJZ {km+i+(G-10}
mem-°
= }-(Mi' i= D).
Lemma 2

(Vi, h, a)( x(h, M) = )((h +a, A(M;, a)) =y(h+a, Mi+a)).

Proof
Let us suppose
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xCh, M) =1, Then
Then (ko €ZAmygeM°)( kgmy+i=nh).
(Qky €ZAmyge M) kgmo+i=nh). Hence,
And by Lemma 1, xuth—=0+1i, M) = ){((Uko)mo +1 Mi) =1
AM;, @) = Mg Otherwise,
Hence, x(h, M;) =0,
x(h+a, AM;, a)) = x(h+a, M) Then
= x((komo + 1) +a, My,,) . .
— X(kOmO + (l + a)‘ Mi+a) (Vko € ZAmO eM )( komo +i#h )
=1 Noting that
Otherwise,
(Vk,€ZAmy € M°)( kymy + 0 #u ).
x(h, M;) =0,
' Combining the both, we have
Then

(Vk, €EZAM, € M°)( kymy # u(h—1i) ).
(VkeZAmeM)(km+i+h).
Thus,
Hence,
uCth—1i)+1i+# kym, +1i,
h+a#km+ (+a), )
1.e.
i.e.
xuCh—1) +i, M;) =0.

x(h+a M) =x(h+a A(M;, @) =0.
So that

So that Vi, h Au g Mo)(x(h, M) = x(u(h— i) +i, M) ).

(Vi, h, a)( x(h, M;) = )((h +a, A(M;, a)) =y(h+a, M, o) ) Remark 2

A stronger conclusion is that
Lemma 3

Vi,hAmeMy)( y(m(h—10)+i, My))=1). m: 0<m<T(0)Am & M,}
Proof:

Obviously, is a multiplicative group of integers modulo T(0). It will not be proved

here because this conclusion is not used in the proofs of this paper.

(3ky €ZAmy € M°)( kgmy+ 0 =m ).

Lemma 5
L (i, b, ), M) = xCh+dT(0), M),
. Proof:
o = ko(h—0), B;Ol?emmq 2
Then

x(h, M) = x(h+dT(0), Mysar)),
m(h—1) +i =kymgy+i.

and
So that
Misarco) = A(My, dT(0)) = p kem + i +dT(0)}.
xm(h—i) +i, M) = x(kymo + i, M) = 1. mew
Lemma 4 By the Definition 5,
(Vi,hAu &M )(x (hM )=y (u (h—i)
+i, M i) ) meM®

Proof:
This implies that
Suppose that

x(h M) =1, (vk € ZAm € M*)((3ky € Z)(km + dT(0) = kym ))
4 J Pure Appl Math Vol 8 No 3 May 2024



Combining this with above,

My aro) = kLer {km +i+dT(0)} (2
meM®
= kgLéZ {kom + i}
meM°
= M;
Hence,

x(h, M) = x(h +dT(0), Misar(y) = x(h+ dT(0), M,).

Remark 3
So, we can see that Mj; is periodic and its period is T'(0).

Lemma 6

Vi, j, b, )( x(h, Myy;) = x(h + dT(0), My,;) ).

The gaps between primes

Proof:

By Lemma 5 we have
x(h, M) = x(h +dT(0), M),

and
x(h, M;) = x(h + dT(0), M;).
It is easy to see that

x(h+dT(0), My,;) = x(h+dT(0), M) ® x(h +dT(0), M;)
= x(h, M) @X(h: Mj)
= x(h, My;),

where we do not need to know exactly what operator ® does.

Remark 4
We can also prove it by the truth table 1.

TABLE 1
So Mj;y; and M; have the same period
x(h, M) x(h, M) x(h + dT(0) x(h + dT(0) x(h M) x(h + dT(0)
M) M) » M)

0 0 0 0 0 0

0 1 0 1 1 1

1 0 1 0 1 1

1 1 1 1 1 1

Vi, a)( |M;[a,a+T(0)| =T(0)-T(D) ).

Lemma 7

|M,[0,7(0))| = T(0) — T(D).

Proof
It is easy to see that

M, [0, 7()] =

mo
mo€M,|0,7(0))

U m0’

(vkezAmeM®)(mo=lkmam,€e[0,T(0)))

()= 2 ()

{my}eme {my,maleMe
Ifmy}l=1 my<m,
()
mim,m.
=T(0) {my,mymz}cM° 1

my<mp<mgy

e 3 )

mymymg---m
(ml'mZVmﬁr"'rm‘n}gMD ! 2 3 n
my <my<mz<-<my

Then the alternating series can be reduced to showing that

T(1)

|M,[0,T(0))| = T(0) (1 T

) =T(0)—-T().

Lemma 8
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Proof:
By Lemma 2,

|M[L-[a, a+ T(O))| = |A(M;, —a)[a —a,a+ T(0) —a)|
= [M;-q[0,7(0)]
= M, [0, T(0))|.

By Lemma 7,
[M;[a,a + T(0)| = [M,[0,T(0))| =T(0) — T(D).

Lemma 9

(vi,j,&)( |[My;[a a +T(0))| < T(0) — T(2) < T(0) ).

Proof:

If
@ken)(j=i+kT(0)),
then (by (2))

[Miy;[a,a+T@)] =|Myla a+TO)]
= |M;[a, a + T(0))]
=T(0)—T(1).

Otherwise, let us suppose
(vm € My)(j — i # 0(mod m) ).

It is similar to the proof of Lemma 7, we have
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[M;;[0,T(0))] =

2! 22
Y () 2 ()
pigeme N, e N2

[{m4}1=1 my<mg

23
<m1m2m3> -

T(0) {mq,mzmz}cM°
my<my<ms
Zn
vt (_1)"1—1 (—)
mymyms - My

{mq,mzms, - mp}cM®
My<Mp<m3<-<mp

Then the alternating series can be reduced to showing that

M50, 7(0)] = T(0) (1-73) = T(0) ~ T(2). 3)

For the opposite case, there is at least one m € M°® such that the
coefficient of each term containing m in the above alternating series is

divided by 2.

The reason is that

@AmeM)({km+j:keZ}={km+ik €Z}).

Therefore,

T2
|M;;[0,T(0))| < T(0) (1 - %) =T(0) — T(2),
when

@AmeMy)(j—i=0(mod m)).
Obviously,

T(0)>T(1)>T(2)>0.

Combining with the above, we have
|M;y;[0,T(0))| < T(0) — T(2) < T(0).

By Lemma 6, Mj;; is periodic with T'(0), and considering Lemma 8,
we can get

[M;y;[a a + T(0))| = |M,,;[0,T(0))| < T(0) — T(2) < T(0).

Lemma 10
@@n>0 ((Vi,j, a)( |Miuj[a,a + 17)| <n ))
Proof:

By Lemma 9, there are at least T(2) numbers in any range T(0) that
make

)((h, Miuj) = 0,
where
h € [a,a+ T(0)).

It can also be expressed as

(vi,j,a) Z 1|=T(2)>0
he[a,a+T(0))Ax(h, My, j)=0

So that

0<n<T(0).

On the basis of Lemma 10 we have

Lemma 11
ij,a)((3helaa+m)xlh M) =x(h+j—i, M) =0)).

Proof:
By Lemma 10,

(vi,j) ((3ho € [a,a +m)(x(ho, M) =0)),
so that

x(ho, M) = x(ho, M;) = 0.

By Lemma 2,

x(ho, M) = x(ho +j — i, M.

Therefore,

X(ho, Ml) = X(hO +] - i, Ml) =0.

Lemma 12

Fort>1,

(Vmy, my, ms, -, m; € M°) (Z p(8) < Z a(a))
SeT seT

where

Io @>izD(a=ara t({—1),

1_[ otherwise.

lmeM“/\mualazagw)%

p((alr a,,as, )) =

and

1
9((ay, az,a3,-+)) = PIC

and
T =

{h1,h2'h3'4»-,}E}={1'2,3'--»'t}{(mh1' mhz, mh3' e mh[;)} .

Proof:
Let

Vo = DM = Prtw)s

and
T(n) = {hl,hz,h3,~»,thJ}:{LZ,S,m,n}{(mhl‘ Mpy, Mpg, 'mhn)}'
Then

J Pure Appl Math Vol 8 No 3 May 2024
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Combining this with Lemma 12, we have
v)rt <tim( > 1)l
TR @20 Yo=Y o< Y Y 960 =) 9.
SET

SET de[1,5] 64€Ty de[1,s] 64€Tg

SETAp(8)#0

= 1_[ m | /(mymyms - m).
meM°Am|(mymymz---my)
Similarly, for
So that
Vo = DM = Prtw)s

Z p(8) Z 1 1_[ l and

m
S€T S€TAp(8)#0 meM°Am|(mymymz---myg)
T(n) = My, My, My, M 3
|7 () {hl.hz.h3.~».hg}={1,2.3.~~.n}{( P ha? T m)}
<—= 9(6).
mym,;ms My

we also have

On the basis of Lemma 12 we have

Z p(8) < Z 9(8).

Lemma 13 S€T(n) §eT(n)
Fort =2 1, ¥se7 p(8) < Xser 9(5) Lemma 14
_ 0.4
Where (Vx = 3) (]'[2<psx a1-2pH= E)
T = mlLEJM“{(mll mp,ms, "';mt)} Proof:
myEM® By Mertens’ second theorem,
mt:EMP
Z (™) =Inlnx + M + 0(1/Inx).
Proof: p<x
Let The value of M is approximately
0 mg #p,
Jp) = {1 mg = p. M =~ 0.261497212847642784 ---.
actrd Forp >2
and
Z (™) = Inlnx + M’ 4+ 0(1/Inx).
s = 1, 2<psx

h120ARy 20N ARy 20 . )
Rythy ety =t The value of M' is approximately

M' ~ —0.238502787152357217 ---.

and
Since
{71,757}
-y
T Ri20ARR2OAARR20 S [In(1=2p™H)+2p7t = f (t ™t —-1)dt
hy+hy+-+hp=t 1

2
p(p—2)’
. {(my, my, mg, -, me)} | and
miEM
moeEM®
. Z 2
meeme Lip(-2)

(vae[1,nD(I(pa)=ha)

is convergent, the series
It is easy to see that

> n(-2p7) +2p7)

T=7UT,U-UT;, e

and
must be convergent. Because the series
(vs=j>i>1D(GNnT; =¢).

J Pure Appl Math Vol 8 No 3 May 2024 7
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Z (™

p>2

is divergent and so the product
1—[ (1-2p7™)

p>2

must diverge also (to zero). We can deduce that

Y. n@-2p™) +2p7)

2<p=x
=) n(-2p™+2p™)
p

=Y (1 -2p7) +2p7)

p>x

Z(ln(l—Zp'1)+2P‘1>+0 Z Go- P — 2))

Z (ln(l —2p )+ 2p ) 40 Z (x-l)

p>x

In 1_[ (1-2p™Y)

2<p=x

=23 ™+ ) (n(-2p™)+2p™)

pP=x 2<p=x

= —2Inlnx — 2M' + Z (In(1=2p™H+2p )+ 0(n"1x)

2<psx

It's known from numerical calculation

Z (n(1—2p™1) +2p~1) ~ —0.660393386913.
p>2

Combining with the above, we can crudely estimate
[Ta-zbs2t

2<psx

through numerical analysis.

Lemma 15
(vx=1) ( L 6§>.
()’

Proof:
If |x] = 2k is even, then

| 2k N
Lx]! =<k>322k=4gszzk+l(1+z) <&

because it’s the largest binomail coefficient in the binomail expansion

of (1 + 1)?. Otherwise, |x] = 2k + 1 is odd, then

Lx|! 2k +1 N x
= & (k+1)SZZk(k+1)522"+1(1+E) <62

Lemma 16
Upper bounds exist for both 8(x) and Y (x) that (Vx = 1)( 6(x) <
P(x) < xIn6 ).

Proof:
By Definition 9, we have

In(lx]) = Y(x) +¢(§) +¢(§) +¢(§) +

Changing x to %, and inserting -2In ([%J') into the above equation we

obtain

X

In(lx]) — 2In ([;J!) =) -y (g) + (g) )+

It is obvious that

P(x) > w(%) > 1/;(%) > w(%) >

so that

$@ = (5) < n(x1) - 2 (151) =

Combining this with Lemma 15, we can get

w(x) — (%) < G) Iné.

. X X X
Changing x to PRl have

v() - (5) < (F)ms
v(3)-v () <Gme
v(5) v (5g) < (F)ms

Adding up them all, we have

P(x) < xIné.

It is easy to see that the relationship between 8 (x) and ¥ (x) is given
by

1
PY(x) = Z 0 (xﬁ).
d=1
There is the fact that

6(x) < yY(x) < xIné.

Lemma 17
Forx = 3,

Let

e(x) = (H2<psxp)(1 - H2<psx a- Zp_l))( 04) s then o(x) < 1.

J Pure Appl Math Vol 8 No 3 May 2024



Proof:
By Lemma 16,

In 1_[ p | < 0(x) < xIn6,
2<p=x

thus

l_[ p | < exp{xIn6}.

2<p=x
By Lemma 14,
0.4
— — -1 < I,
1 1—[ a-2r™ _(1 lnzx)'
2<psx

Combining these results with numerical analysis we obtain

In%x
0.4y (52 peins
o(x) < exp{xln6} (1 — m)

< exp{xIn6}exp{—xIn6}
=1
ESTIMATION OF L;(a,t) AND
In this section we estimate L, (a, t) and 1.
First, for t = 0, let

Li(a,t) ={m: {Imm+1,m+2,--,m+t} < M;[a,a+T(0O) +t)}

We can see that for each element in L, (@, t), it denotes that there are
(t + 1) consecutive elements in M;[a, a + T(0) + t). We have

T(l))t“

[Li(a,t)| < T(0) (1 T

Proof:
Considering the proof of Lemma 7 and Lemma 8, and combining
this with Lemma 12 and Lemma 13, we have

L@ol=] 0 MiufeatTO)<

€[o,t]

1 1 t+1
()~ (o) +

e T gy w12

Iomy}I=1 ma<my

()
mym;ms

T(0) {my,ma,ma}eM°

my<mz<mg

1
ot 1y ()
mym,ms---my,

{mq,mzms, - mp}cM®
My <my<mgz<--<my

T(1)>t+1

=T(0) (1 —m

i.e.
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(1) t+1
o)

[L1(a, )| < T(0) (1

Next, let us look at the case of

Ly(a,t) = {m: mm+1,m+2,-,m+t} € Myjla,a+T(0)+ t)}.

We can also see that for each element in L, (a, t), it denotes that there
are (t + 1) consecutive elements in M;;[a, a + T(0) + t).

It is similar to the case of Ly (@, t), combining this with Lemma 9 and
Lemma 13, we have

|[Ly(a, t+ 1| <

> ()
mgem N mdem

22 t+1
+
(mlmZ)
[fmy}=1 my<m,
23
(ml m2m3> B

271
e (=L (—)
mym,ms---m,

{my,myms, - mp}cM°
my<my<ms<--<mp

T(0) {mq,mymz}cM®

my<my<mgs

T(2) t+1
7®)

=T(0) (1
Now we can deduce that

(vt > 0) ( ILo(a 0] < 7(0) (1-12)" ) @.1)

T(0)
Considering the relationship between L,(a,t) and 1 (in Lemma 10,
Lemma 11), we have
n =inffm+ 1: m = 0 A |L,(a,m)| = 0}, 4.2)
according to the definition of L,(a, t)

For the next proof of theorems, we assume that there exists 17 that
satisfies

n<Z (4.3)
It requires
i B
o) =0
By (4.1), we have
p2 T(Z) l%]
n
L, (a, lEJ - 1)‘ <T(0) (1 — m)
(B
peEM® pPEM®
9
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By Lemma 17, we know that we have

(o) <1

when
In?py 7
(%525 Paln < 1221 (4.4)
Let
x?  (In®x
f(x) = E - (W) xIné6.

Then for x # 0,

f(x)\, 1 2ln6lnx
x ) 8 04x °

We can easily get a crude result that

X
(f ( )) 'S0
x
when x > 436 through numerical analysis.

So that f(x) is monotonically increasing when x > 436.

Next, the numerical analysis is continued, we can easily get another
crude result that

f(x)>0
when

x > 2096 .
Now we know that the condition (4-4) is satisfied when p,, > 2096.
Therefore, (4-3) holds for p,, > 2096.

(Vpn > 2096) ((Elr)) (7} < %))

PROOF OF THEOREMS
We are now in the position to prove Theorem 1and 2.
For n with p, < 2096, we know that the theorems hold through

computer verification.

Otherwise, we have

p%<p%+1'
2

combining this with Lemma 11, we have

+1
(Va,i,je [i+1,i+pn2 ))

10

pi+1 .
<<3h€[a,a+ 2 ))(){(h, M) =xth+j—4i Mi)=0)>.

And let

T(0)+
i+ ()2 pn‘

we have

(Vi,je [i+1,i+”"T“)) ((Elhe [i+”°)%, (5.1)

T(0 2 .+ 1 .
+()“’%>>(X(h, M) = x(h+j, M) = 0)>-

Then we can deduce that for every h in (5.1) satisfying the condition
(x(h, M) = x(h+j, M;) =0),
So, we have q; and g, are both prime numbers, defined by

q =2(h—-1)-T(0),
4z =q+2j=2(h—1i)—T() +2j.

Proof:

Since

x (WM )=x (h+j,
M )=0,

we have
x(h, M) = x(h—i, A(M;, 0 — i) = y(h— i, M,) =0,

Because the prime number 2 does not belong to M°,
by Lemma 4, we have

xCh, M) = x(2(h—1) +1i, M;) = 0.
Combining this with Lemma 5 we have
x(h, M) = x(2(h—i) +i—T(0), M;) = x(q;, My) =0.
i.e.
(vm € M°)( g, # 0(mod m) ). (5.2)
Similarly, we have

x(h+j, M) = x(2(h =) +i—T(0) + 2, M;) = x(q,, M,) =0.

i.e.
(vm € M°)( q, £ 0(mod m) ). (5.3)
Noting that the domain of h, we can deduce

4 € [pn pulpn + D),
42 € lpn+2, pnpn +2)].

Obviously,

T(0) # 0(mod 2),
g1 % 0(mod 2),
q, % 0(mod 2).
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And M° contains all odd primes not greater than py,, so that
Yw € [Py, pu(pn +2)],
if w is not a prime number, there must be

(Elm e (M°u {2}))( w = 0(mod m) ).

Thus, combined with (5.2) and (5.3), g; and g, must be prime
numbers.
This implies that

for every ps > 2096, there must be primes p, and p;, between ps and
2
s + 2ps,

(Vd € [1,}95;— 1))(pa —pp, =2d).

ie.

(vps > 2096)((3pa, Py € [ps P2 + 2p5])

((Vd € [1,%)) (pa—pp=2d )) .

Since there are infinite primes, we can conclude that for any positive
integer d, there are infinitely many prime gaps of size 2d. This proves
Theorem 1.

Next, let us transform the problem of gaps between primes into the
problem of sums of two primes.

Let
T(0) +
@)
2
Since
2
Pn
<
n= 8’

combining this with Lemma 10, we have

<Vi,je [i+p1+[§],i+p1+[%)) ((3nefie T2, (.4)

T(0 2
i+%+{%“]>> (x(h, My;)=0) ).

Then we can deduce that for every h in (5.4) satisfying the condition
(X(hr Miuj) =0 ).
so we have g; and g, are both prime numbers, defined by

g =2h-0)-T(0),
gz =2( —h)+T(0).

Proof:
By the condition,
x (M )=y (b M j)=0.

Then it is similar to the proof of Theorem 1,

x (@M )=y Qh-i)M )=y (h—i, M o =
x (M )=0x(q M d=x QG - M J=x
—j M )=x (h, j)ZO.
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It is easy to see that
(Vm € (M°u {2}))( ¢, % 0(mod m) ),
(Vm e (M°u {2}))( q, % 0(mod m) ).

Noting that the domain of h, we can deduce

p?
q € [Pb 2[3] + P1>'
9. € [p1, pi+po.

So g and g, are both prime numbers.
Now let us look at the domain of (q; + q2),

o i A
Gtq=2(G-0€E 2P1+2[§]r 2P1+217] .

This implies that

for every ps > 2096, there must be primes p, and p;, between p;
and pf + py,

p2 pZ
(Vd € [m +Igl Pt l%])) (pa+pp=2d).

i.e.

2
p
(Vps > 2096) | (3pa, pp € [P1.PZ + p1]) <(Vd € [pl + [é].

p1t [%])) (pa+pp=2d ))) (5.5)

By Bertrand-Chebyshev theorem, we have

Ps+1 < 2ps,

then

SO

2 2 2 2
s> 1) ([p + 1B py+ 1%51) n [pl + 1B, py+ 1B 11) - ¢).

Combining this with (5.5), we can conclude that

(Vps > 2096) | (Apa, pp) (Vd
€ [P1 + [%5], bt l%ﬂ)) (Pa+p»
=2d) ||

where py, is the smallest prime number greater than 2096, that is,
2099.
It is easy to get

11
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2
py+ [%”] — 34550726 = 550729.

i.e.
(vps > 2096) [ (3pg, ps) (Vd
p?
€ 550729, p; + [7J (pa +pp
=2d)

While the results of d € [1,550729) can be obtained by computer-
aided verification.

Since there are infinite primes, we can conclude that every even
number greater than 2 is the sum of two prime numbers. This proves
Theorem 2.
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