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 RESEARCH 
 The gaps between primes 

Lei Shi 

INTRODUCTION 
he number theory, Polignac's conjecture was made by Alphonse 
de Polignac in 1849 and states: 

For any positive even number n, there are infinitely many prime gaps 
of size n. In other words: There are infinitely many cases of 
two consecutive prime numbers with difference n. The case n=2, it is 
the twin prime conjecture. 

Although the conjecture has not yet been proven or disproven for any 
given value of n , in 2013 an important breakthrough was made by 
Zhang Yitang who proved that there are infinitely many prime gaps of 
size n for some value of n <70; 000; 000. Later that year, James 
Maynard announced a related breakthrough which proved that there 
are infinitely many prime gaps of some size less than or equal to 600. 
As of April 14, 2014, one year after Zhang's announcement, according 
to the Polymath project wiki, n  has been reduced to 246. Further, 
assuming the Elliott-Halberstam conjecture and its generalized form, 
the Polymath project wiki states that n  has been reduced to 12 and 6, 
respectively [1-4]. 

Goldbach's conjecture is one of the oldest and best-known unsolved 
problems in number theory and all of mathematics. It was proposed by 
the German mathematician Christian Goldbach in a letter to 
Leonhard Euler on 7 June 1742. It states that every even whole number 
greater than 2 is the sum of two prime numbers. The conjecture has 
been shown to hold for all integers less than 4 × 1018, but remains 
unproven despite considerable effort [3]. 

In this paper, we will prove the above two conjectures. 

Theorem 1 
For any positive integer d, there are infinitely many prime gaps of 
size 2D. 

Theorem 2 
Every even number greater than 2 is the sum of two prime numbers. 

Here is a brief introduction to the main ideas of proofs. 

In the study of 𝑎𝑎 + 𝑏𝑏  problems, the 𝑃𝑃𝜔𝜔(𝑥𝑥, 𝑧𝑧)  type sieve function is
commonly used. Since Brun obtained 9 + 9, many research results on 
𝑎𝑎 + 𝑏𝑏  type propositions have corresponding forms of twin prime 
number problem. For example, the Brun-Buchstab sieve method for 
deriving the 5 + 5 problem can also be used to prove with almost the 
same complexity that there are infinite positive integers n such that the 
number of prime factors for n and n + 2 does not exceed 5. But the 
complexity of these two problems shows a significant difference when 
the Selberg sieve is used to estimate the upper bound of 𝑃𝑃𝑤𝑤(𝑥𝑥, 𝑧𝑧). At 
this point, the two problems can be linked together through the 
monotonic principle in the sieve method. 

The abstract form of the sieve method is usually referred to as 

𝑆𝑆(𝒜𝒜,𝒫𝒫) : = 𝒜𝒜\ ⋃
𝑝𝑝∈𝒫𝒫

𝒜𝒜𝑝𝑝,

Where 𝒜𝒜 is a set of integers, 𝒫𝒫 is a set of prime numbers, and 𝒜𝒜𝑝𝑝 is a 
subset of all elements in 𝒜𝒜 that can be divisible by 𝒫𝒫. It is easy to see 
from the Inclusion-Exclusion Principle that 

#𝑆𝑆(𝒜𝒜,𝒫𝒫) = � (−1)#𝒬𝒬#𝒜𝒜𝒬𝒬
𝒬𝒬⊆𝒫𝒫

, 

For any subset 𝒬𝒬 of 𝒫𝒫, 

𝒜𝒜𝒬𝒬 : = ⋂
𝑝𝑝∈𝒬𝒬

𝒜𝒜𝑝𝑝. 

It can be seen that the sieve method is essentially calculating the 
number of remaining elements in the Difference of a set and the 
Union. The basic problem of the sieve method is to estimate the upper 
bound and positive lower bound of the sieve function (if any). 

In typical scenarios, the modern definition of the sieve function is 

𝑆𝑆(𝒜𝒜,𝒫𝒫, 𝑧𝑧) : = {𝑎𝑎 ∈ 𝒜𝒜:  ∀𝑝𝑝|𝑃𝑃(𝑧𝑧),  𝑝𝑝 ∤ 𝑎𝑎}, 
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It is proved that: 

• For any positive integer d, there are infinitely many
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where 

𝑃𝑃(𝑧𝑧) = �𝑝𝑝
𝑝𝑝∈𝒫𝒫
𝑝𝑝<𝑧𝑧

. 

It is easy to see that 

#𝑆𝑆(𝒜𝒜,𝒫𝒫, 𝑧𝑧) = � 1
𝑎𝑎∈𝒜𝒜

�𝑎𝑎,𝑃𝑃(𝑧𝑧)�=1

, 

That is to calculate the number of elements in 𝒜𝒜 that are coprime with 
P (z). So, when using the sieve method to study twin prime numbers 
and the Goldbach problem, that is 𝒜𝒜 = {𝑖𝑖(𝑖𝑖 − 2):  𝑖𝑖 ≤ 𝑤𝑤} and 𝒜𝒜 =
{𝑖𝑖(𝑤𝑤 − 𝑖𝑖):   𝑖𝑖 ≤ 𝑤𝑤}. 

The form of the sieve function on a continuous interval will be like 

𝑆𝑆(0,𝑃𝑃;𝑃𝑃) : = {0 ≤ 𝑎𝑎 < 𝑃𝑃:  (𝑎𝑎,𝑃𝑃) = 1}, 

where 

𝑃𝑃 = �𝑝𝑝
𝑝𝑝∈𝒫𝒫

, 

𝒫𝒫 is composed of the first n odd prime numbers 

𝒫𝒫  : = {𝑝𝑝 1, 𝑝𝑝 2, 𝑝𝑝 3, ⋯ , 𝑝𝑝 𝑛𝑛 }.

When n is sufficiently large, for any positive integer d , if h and ℎ − 𝑑𝑑  are 
both elements of 𝑆𝑆 (0, 𝑃𝑃 ; 𝑃𝑃 ) , then there must exist two odd 
numbers q1 and q2 in 𝑆𝑆 (0, 𝑃𝑃 ; 𝑃𝑃 ) that are coprime with P and with a 
gap of size 2d , such as: 

𝑞𝑞 1 = 2ℎ − 𝑃𝑃 , 

𝑞𝑞 2 = 2(ℎ − 𝑑𝑑 ) − 𝑃𝑃 . 

It is easy to know that a sufficient condition for q1 and q2 to be prime 
numbers is that their values are both on the interval [𝑝𝑝 𝑛𝑛 , 𝑝𝑝 2 + 
2𝑝𝑝 𝑛𝑛 ].

Defining product functions 

𝑣𝑣(𝑎𝑎) = � 𝑝𝑝
𝑝𝑝∈𝒫𝒫

𝑎𝑎≡0(𝑝𝑝)∨𝑎𝑎≡𝑑𝑑(𝑝𝑝)

. 

Then, for the problem of the gap between prime numbers, there is a 
sieve function that removes multiple congruence classes 

𝑆𝑆2�0,𝑃𝑃;𝑃𝑃, 𝑣𝑣(𝑎𝑎)� : = {0 ≤ 𝑎𝑎 < 𝑃𝑃:  (𝑣𝑣(𝑎𝑎),𝑃𝑃) = 1}.

In this way, the problem of the gap between two prime numbers is 
transformed into the problem of the distribution of elements in the 𝑆𝑆2 
sieve. Considering the gap between adjacent elements in 𝑆𝑆2sieve, if the 
maximum gap between adjacent elements in 𝑆𝑆2  sieve is not greater 

than  
𝑝𝑝𝑛𝑛2

2
, then there must be at least one element ℎ∗in 𝑆𝑆2 sieve, so that 

the values of 𝑞𝑞1∗ = 2ℎ∗ − 𝑃𝑃 and 𝑞𝑞2∗ = 2(ℎ∗ − 𝑑𝑑) − 𝑃𝑃 are both within
the interval [𝑝𝑝𝑛𝑛,𝑝𝑝𝑛𝑛2 + 2𝑝𝑝𝑛𝑛].

The problem of the sum of two prime numbers is similar. Simply 
replace the (ℎ − 𝑑𝑑)in the q2 expression with (𝑑𝑑 − ℎ), and replace -P 
with +P, then we can obtain that the two elements q1 and q2 satisfy 

𝑞𝑞1 + 𝑞𝑞2 = 2𝑑𝑑. But this constraint is more stringent on the maximum 
gap between adjacent elements in 𝑆𝑆2, to ensure that such a prime pair 
always exists continuously for any d . 

So we unified the sum of prime numbers problem and the gap between 
prime numbers problem into the minimum upper bound problem of 
the gap between adjacent elements in the 𝑆𝑆2 sieve. 

Certainly, we can also describe this same problem in a more intuitive 
set form. 

For any positive integer d , take a sufficiently large prime 𝑝𝑝𝑛𝑛, where 𝑝𝑝𝑛𝑛 
is the n-th odd prime [1]. 

Let the set H denotes all integers without factor 𝑝𝑝 1, 𝑝𝑝 2, ⋯ , 𝑝𝑝 𝑛𝑛 s. 

ℍ = {ℎ: (∀𝑝𝑝  ∈ {𝑝𝑝 1, 𝑝𝑝 2, ⋯ , 𝑝𝑝 𝑛𝑛 })(𝑝𝑝  ∤ |ℎ|)}  (1) 

For any element h  belongs to ℍ, if (ℎ − 𝑑𝑑) also belongs to ℍ, there 
must be two odd pseudo primes 𝑞𝑞1  and 𝑞𝑞2  with a gap of size 2d 
belonging to ℍ, such as [3]. 

𝑞𝑞1 = 2ℎ − 𝒯𝒯, 

𝑞𝑞2 = 2(ℎ − 𝑑𝑑) − 𝒯𝒯, 

Where 

𝒯𝒯 = � 𝑝𝑝
𝑝𝑝∈{𝑝𝑝1,𝑝𝑝2,⋯,𝑝𝑝𝑛𝑛}

. 

Then the sufficient condition for them to be real prime numbers is in 
the domain [𝑝𝑝𝑛𝑛,𝑝𝑝𝑛𝑛2 + 2𝑝𝑝𝑛𝑛].

Let ℍ∗ be the set of overlapping pseudo primes, composed of all 
elements that meet the above conditions [4]. 

ℍ∗ = {ℎ:  ℎ ∈ ℍ ∧ (ℎ − 𝑑𝑑) ∈ ℍ}. 

Now let's consider the gaps between adjacent elements belong to  ℍ∗. 
Obviously, if the maximum gaps between adjacent elements belong to 

ℍ∗ are less than 
𝑝𝑝𝑛𝑛2

2
, there will be at least one element h* belongs to ℍ,

so that 𝑞𝑞1 and 𝑞𝑞2 are both in the domain [𝑝𝑝𝑛𝑛,𝑝𝑝𝑛𝑛2 + 2𝑝𝑝𝑛𝑛], because the
range is greater than 𝑝𝑝𝑛𝑛2.

The case of sums of primes is similar, except that (ℎ − 𝑑𝑑)  will be 
replaced by (𝑑𝑑 − ℎ) and the condition of maximum gaps between 

adjacent elements belong to ℍ∗ must be less than 
𝑝𝑝𝑛𝑛2

8
.

Therefore, the core of this proofs is that the upper bound of the 
maximum gaps between overlapping pseudo primes must be less 

than
𝑝𝑝𝑛𝑛2

8
. By estimating the maximum length of consecutive elements in 

the complement set of ℍ∗ , we will prove that it holds when 𝑝𝑝𝑛𝑛  is
greater than 2096. 

Remark 1 

1. In other words, as long as d is sufficiently small, such as
𝑑𝑑 = 1, then 𝑝𝑝𝑛𝑛  can be arbitrary. Actually, 𝑝𝑝𝑛𝑛 > 2𝑑𝑑 will
be enough.

2. For example, for 𝑝𝑝𝑛𝑛 = 5, ℍ = {..., -4, -2, -1, 1, 2, 4, 7, 8, 
11, 13, 14, 16, 17, ... }g. 

3. pseudo prime means that it contains no factors
𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑛𝑛.
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4. overlapping pseudo prime means that element h  and its
corresponding element (ℎ − 𝑑𝑑) are both pseudo primes
in set ℍ.

NOTATION AND DEFINITIONS 
Notation. 
𝑎𝑎,  𝑏𝑏,  𝑐𝑐,  𝑑𝑑,  ℎ,  𝑖𝑖,  𝑗𝑗,  𝑘𝑘,  𝑚𝑚,  𝑛𝑛,  𝑞𝑞,  𝑡𝑡,  𝑤𝑤,  𝑢𝑢:  integers. 
𝑝𝑝: a prime number. 
𝑝𝑝𝑡𝑡: the 𝑡𝑡-th odd prime number 𝑝𝑝1=3, 𝑝𝑝2=5, etc. 
𝑎𝑎 ∣ 𝑑𝑑 means 𝑎𝑎 is a divisor of 𝑑𝑑. 
𝑎𝑎 ∤ 𝑑𝑑 means 𝑎𝑎 does not divide 𝑑𝑑. 
 𝑥𝑥: variable. 
⌊𝑥𝑥⌋ means the largest integer which does not exceed 𝑥𝑥. 
⌈𝑥𝑥⌉ means the least integer not less than 𝑥𝑥. 

 $\dbinom{d}{a}$ means 𝑑𝑑 choose 𝑎𝑎; the binomail coefficient 
𝑑𝑑!

𝑎𝑎!(𝑑𝑑−𝑎𝑎)!
.

 𝔸𝔸: an abstract field for function parameter. 
 ℤ: the field of integers. 
𝕄𝕄∘: the base set of 𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑛𝑛.
𝕄𝕄𝑖𝑖 : infinite set generated by elements of 𝕄𝕄∘ with offset 𝑖𝑖.

 𝕄𝕄𝑖𝑖∪𝑗𝑗  means 𝕄𝕄𝑖𝑖 ∪𝕄𝕄𝑗𝑗 . 
 𝔸𝔸[𝑎𝑎, 𝑏𝑏) means 𝔸𝔸 ∩ [𝑎𝑎,𝑏𝑏). 
 |𝔸𝔸| denote the cardinality of set 𝔸𝔸. 
 𝜆𝜆(𝔸𝔸,𝑑𝑑): generate a new set by adding 𝑑𝑑 to each element of set 𝔸𝔸. 
 𝑇𝑇(𝑎𝑎): product function. 
 𝜒𝜒(𝑎𝑎,𝔸𝔸): use 0 or 1 to indicate whether 𝑎𝑎 belongs to 𝔸𝔸. 
 𝛬𝛬(𝑑𝑑): the von Mangoldt function. 
 𝜃𝜃(𝑥𝑥): the first Chebyshev function. 
 𝜓𝜓(𝑥𝑥): the second Chebyshev function. 
(𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,⋯ ), (⋯ ): ordered arrays. 
𝜌𝜌�(𝑎𝑎1,𝑎𝑎2,⋯ )�,  𝜗𝜗�(⋯ )�: custom functions for lemma declaration.
𝜇𝜇�(𝑎𝑎1,𝑎𝑎2,⋯ ),𝑚𝑚�: a custom function for proving lemma.

 𝒥𝒥(𝑝𝑝),   𝒦𝒦(𝑝𝑝),   𝒮𝒮(𝑤𝑤): custom functions for proving lemma. 
 ϱ(𝑥𝑥): a custom function, we will prove that it is less than 1. 
 𝜂𝜂: used to denote the gaps of overlapping pseudo primes. 
𝐿𝐿𝑖𝑖(𝑎𝑎, 𝑡𝑡): used to estimate.

 𝒯𝒯,   ℋ: custom sets. 
𝑣𝑣(ℋ1,ℋ2,⋯ ): defined to assist in estimating 𝐿𝐿𝑖𝑖(𝑎𝑎, 𝑡𝑡).

 �𝑓𝑓(𝑥𝑥)�′ means 𝑓𝑓′(𝑥𝑥), that is the derivative of 𝑓𝑓(𝑥𝑥). 
 exp{⋯ }: exponential function. 
 inf{⋯ }: greatest lower bound. 
 sup{⋯ }: least upper bound. 

Definition 1 
For 𝑛𝑛 ≥ 1, 

𝕄𝕄∘ = {𝑝𝑝1,𝑝𝑝2,⋯ ,𝑝𝑝𝑛𝑛}.

Definition 2 
For any 𝑖𝑖, 

𝕄𝕄𝑖𝑖 = ⋃
𝑘𝑘∈ℤ
𝑚𝑚∈𝕄𝕄∘

{𝑘𝑘𝑘𝑘 + 𝑖𝑖}. 

Definition 3 
For any i and j, 
𝕄𝕄𝑖𝑖∪𝑗𝑗 = 𝕄𝕄𝑖𝑖 ∪𝕄𝕄𝑗𝑗 . 

Definition 4 
Let λ be the function, defined by 

𝜆𝜆(𝔸𝔸,𝑑𝑑) = {𝑚𝑚:𝑚𝑚 = 𝑎𝑎 + 𝑑𝑑 ∧ 𝑎𝑎 ∈ 𝔸𝔸}. 

Definition 5 

For any 𝑎𝑎, 

𝑇𝑇(𝑎𝑎) = � (𝑚𝑚− 𝑎𝑎)
𝑚𝑚∈𝕄𝕄∘

. 

Definition 6 
Let the function 𝜒𝜒 be given by 

𝜒𝜒(𝑎𝑎,𝔸𝔸) = �
1     if 𝑎𝑎 ∈ 𝔸𝔸,
0     otherwise. 

Definition 7 
The von Mangoldt function 𝛬𝛬 is defined by 

𝛬𝛬(𝑑𝑑) = �
ln𝑝𝑝   if 𝑑𝑑 = 𝑝𝑝𝑘𝑘 ∧ 𝑘𝑘 ≥ 1,
0  otherwise.

The unique factorization property of the natural numbers implies 

ln𝑑𝑑 = �𝛬𝛬(𝑎𝑎)
𝑎𝑎∣𝑑𝑑

, 

The sum is taken over all integers a that divide d . 

Definition 8 
The first Chebyshev function 𝜃𝜃(𝑥𝑥) is defined by 

𝜃𝜃(𝑥𝑥) = � ln𝑝𝑝
𝑝𝑝≤𝑥𝑥

, 

Where the sum is over primes 𝑝𝑝 ≤ 𝑥𝑥. 

Definition 9 
The second Chebyshev function 𝜓𝜓(𝑥𝑥) is defined similarly 

𝜓𝜓(𝑥𝑥) = � � ln𝑝𝑝
𝑝𝑝𝑘𝑘≤𝑥𝑥𝑘𝑘∈ℕ

= �𝛬𝛬(𝑑𝑑), 
𝑑𝑑≤𝑥𝑥

 

With the sum extending over all prime powers not exceeding 𝑥𝑥. 

LEMMAS 
In this section we introduce a number of prerequisite results, some of 
them given here may not be in the strongest forms, but they are 
adequate for the proofs of Theorems 1 and 2. 

Lemma 1 
(∀𝑖𝑖, 𝑗𝑗)�  𝕄𝕄𝑗𝑗 =  𝜆𝜆(𝕄𝕄𝑖𝑖 ,   𝑗𝑗 − 𝑖𝑖)  �.

Proof 
By Definition 2 and Definition 4, we obtain 
𝕄𝕄𝑗𝑗 = ⋃

𝑘𝑘∈ℤ
𝑚𝑚∈𝕄𝕄∘

{𝑘𝑘𝑘𝑘 + 𝑗𝑗}

= ⋃
𝑘𝑘∈ℤ
𝑚𝑚∈𝕄𝕄∘

{𝑘𝑘𝑘𝑘 + 𝑖𝑖 + (𝑗𝑗 − 𝑖𝑖)}

=  𝜆𝜆(𝕄𝕄𝑖𝑖 ,   𝑗𝑗 − 𝑖𝑖).

 

Lemma 2 
(∀𝑖𝑖, ℎ,𝑎𝑎)�  𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒�ℎ + 𝑎𝑎,   𝜆𝜆(𝕄𝕄𝑖𝑖 ,  𝑎𝑎)� = 𝜒𝜒(ℎ + 𝑎𝑎,  𝕄𝕄𝑖𝑖+𝑎𝑎) �. 

Proof 
Let us suppose 
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𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 1,  

Then 

(∃𝑘𝑘0 ∈ ℤ ∧𝑚𝑚0 ∈ 𝕄𝕄∘)(  𝑘𝑘0𝑚𝑚0 + 𝑖𝑖 = ℎ  ).  

And by Lemma 1, 

𝜆𝜆(𝕄𝕄𝑖𝑖 ,  𝑎𝑎) = 𝕄𝕄𝑖𝑖+𝑎𝑎. 

Hence, 

𝜒𝜒�ℎ + 𝑎𝑎,   𝜆𝜆(𝕄𝕄𝑖𝑖 ,  𝑎𝑎)� = 𝜒𝜒(ℎ + 𝑎𝑎,  𝕄𝕄𝑖𝑖+𝑎𝑎)
= 𝜒𝜒�(𝑘𝑘0𝑚𝑚0 + 𝑖𝑖) + 𝑎𝑎,   𝕄𝕄𝑖𝑖+𝑎𝑎�
= 𝜒𝜒(𝑘𝑘0𝑚𝑚0 + (𝑖𝑖 + 𝑎𝑎),   𝕄𝕄𝑖𝑖+𝑎𝑎)
= 1.

Otherwise, 

𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 0,  

Then 

(∀𝑘𝑘 ∈ ℤ ∧𝑚𝑚 ∈ 𝕄𝕄∘)(  𝑘𝑘𝑘𝑘 + 𝑖𝑖 ≠ ℎ  ).  

Hence, 

ℎ + 𝑎𝑎 ≠ 𝑘𝑘𝑘𝑘 + (𝑖𝑖 + 𝑎𝑎),  

i.e.

𝜒𝜒(ℎ + 𝑎𝑎,   𝕄𝕄𝑖𝑖+𝑎𝑎) = 𝜒𝜒�ℎ + 𝑎𝑎,   𝜆𝜆(𝕄𝕄𝑖𝑖 ,  𝑎𝑎)� = 0.  

So that 

(∀𝑖𝑖, ℎ,𝑎𝑎)�  𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒�ℎ + 𝑎𝑎,   𝜆𝜆(𝕄𝕄𝑖𝑖 ,  𝑎𝑎)� = 𝜒𝜒(ℎ + 𝑎𝑎,  𝕄𝕄𝑖𝑖+𝑎𝑎) �. 

Lemma 3 
(∀𝑖𝑖, ℎ ∧ 𝑚𝑚 ∈ 𝕄𝕄0)(  𝜒𝜒(𝑚𝑚(ℎ − 𝑖𝑖) + 𝑖𝑖,   𝕄𝕄𝑖𝑖) = 1  ). 

Proof: 
Obviously, 

(∃𝑘𝑘0 ∈ ℤ ∧𝑚𝑚0 ∈ 𝕄𝕄∘)(  𝑘𝑘0𝑚𝑚0 + 0 = 𝑚𝑚  ). 

Let 

𝑘𝑘1 = 𝑘𝑘0(ℎ − 𝑖𝑖),

Then 

𝑚𝑚(ℎ − 𝑖𝑖) + 𝑖𝑖 = 𝑘𝑘1𝑚𝑚0 + 𝑖𝑖.

So that 

𝜒𝜒(𝑚𝑚(ℎ − 𝑖𝑖) + 𝑖𝑖,   𝕄𝕄𝑖𝑖) =  𝜒𝜒(𝑘𝑘1𝑚𝑚0 + 𝑖𝑖,  𝕄𝕄𝑖𝑖) = 1.

Lemma 4 

(∀𝑖𝑖 , ℎ ∧ 𝑢𝑢  ∉ 𝕄𝕄 0)(  𝜒𝜒 (ℎ,  𝕄𝕄 𝑖𝑖 ) = 𝜒𝜒 (𝑢𝑢 (ℎ − 𝑖𝑖 ) 

+ 𝑖𝑖 ,  𝕄𝕄 𝑖𝑖 )  ). 

Proof:

Suppose that

𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 1,

Then 

(∃𝑘𝑘0 ∈ ℤ ∧𝑚𝑚0 ∈ 𝕄𝕄∘)(  𝑘𝑘0𝑚𝑚0 + 𝑖𝑖 = ℎ  ).

Hence, 

𝜒𝜒(𝑢𝑢(ℎ − 𝑖𝑖) + 𝑖𝑖,   𝕄𝕄𝑖𝑖) = 𝜒𝜒�(𝑢𝑢𝑘𝑘0)𝑚𝑚0 + 𝑖𝑖,   𝕄𝕄𝑖𝑖� = 1.

Otherwise, 

𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 0,

Then 

(∀𝑘𝑘0 ∈ ℤ ∧𝑚𝑚0 ∈ 𝕄𝕄∘)(  𝑘𝑘0𝑚𝑚0 + 𝑖𝑖 ≠ ℎ  ). 

Noting that 

(∀𝑘𝑘1 ∈ ℤ ∧ 𝑚𝑚1 ∈ 𝕄𝕄∘)(  𝑘𝑘1𝑚𝑚1 + 0 ≠ 𝑢𝑢  ).

Combining the both, we have 

(∀𝑘𝑘2 ∈ ℤ ∧𝑚𝑚2 ∈ 𝕄𝕄∘)(  𝑘𝑘2𝑚𝑚2 ≠ 𝑢𝑢(ℎ − 𝑖𝑖)  ).

Thus, 

𝑢𝑢(ℎ − 𝑖𝑖) + 𝑖𝑖 ≠ 𝑘𝑘2𝑚𝑚2 + 𝑖𝑖,

i.e.

𝜒𝜒(𝑢𝑢(ℎ − 𝑖𝑖) + 𝑖𝑖,   𝕄𝕄𝑖𝑖) = 0.

So that 

(∀𝑖𝑖,ℎ ∧ 𝑢𝑢 ∉ 𝕄𝕄0)(  𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒(𝑢𝑢(ℎ − 𝑖𝑖) + 𝑖𝑖,   𝕄𝕄𝑖𝑖)  ).

Remark 2 
A stronger conclusion is that 

{𝑚𝑚:  0 ≤ 𝑚𝑚 < 𝑇𝑇(0) ∧ 𝑚𝑚 ∉ 𝕄𝕄0}

is a multiplicative group of integers modulo T(0). It will not be proved 
here because this conclusion is not used in the proofs of this paper. 

Lemma 5 
(∀𝑖𝑖,ℎ, 𝑑𝑑)(  𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒(ℎ + 𝑑𝑑𝑑𝑑(0),   𝕄𝕄𝑖𝑖)  ).

Proof: 
By Lemma 2, 

𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒�ℎ + 𝑑𝑑𝑑𝑑(0),   𝕄𝕄𝑖𝑖+𝑑𝑑𝑑𝑑(0)�,

and 

𝕄𝕄𝑖𝑖+𝑑𝑑𝑑𝑑(0) = 𝜆𝜆�𝕄𝕄𝑖𝑖 ,  𝑑𝑑𝑑𝑑(0)� = ⋃
𝑘𝑘∈ℤ
𝑚𝑚∈𝕄𝕄∘

{𝑘𝑘𝑘𝑘 + 𝑖𝑖 + 𝑑𝑑𝑑𝑑(0)}. 

By the Definition 5, 

𝑇𝑇(0) = � 𝑚𝑚
𝑚𝑚∈𝕄𝕄∘

. 

This implies that 

(∀𝑘𝑘 ∈ ℤ ∧𝑚𝑚 ∈ 𝕄𝕄∘)�(∃𝑘𝑘0 ∈ ℤ)( 𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑑𝑑(0) = 𝑘𝑘0𝑚𝑚 )� 
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Combining this with above, 

 𝕄𝕄𝑖𝑖+𝑑𝑑𝑑𝑑(0) = ⋃
𝑘𝑘∈ℤ
𝑚𝑚∈𝕄𝕄∘

{𝑘𝑘𝑘𝑘 + 𝑖𝑖 + 𝑑𝑑𝑑𝑑(0)}  (2) 

 = ⋃
𝑘𝑘0∈ℤ
𝑚𝑚∈𝕄𝕄∘

{𝑘𝑘0𝑚𝑚 + 𝑖𝑖}

= 𝕄𝕄𝑖𝑖 

Hence, 

𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒�ℎ + 𝑑𝑑𝑑𝑑(0),   𝕄𝕄𝑖𝑖+𝑑𝑑𝑑𝑑(0)� = 𝜒𝜒(ℎ + 𝑑𝑑𝑑𝑑(0),   𝕄𝕄𝑖𝑖).

Remark 3 
So, we can see that 𝕄𝕄𝑖𝑖  is periodic and its period is 𝑇𝑇(0).

Lemma 6 
(∀𝑖𝑖, 𝑗𝑗,ℎ, 𝑑𝑑)�  𝜒𝜒�ℎ,   𝕄𝕄𝑖𝑖∪𝑗𝑗� = 𝜒𝜒�ℎ + 𝑑𝑑𝑑𝑑(0),   𝕄𝕄𝑖𝑖∪𝑗𝑗�  �.

Proof: 

By Lemma 5 we have 

𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒(ℎ + 𝑑𝑑𝑇𝑇(0),   𝕄𝕄𝑖𝑖), 

and 

𝜒𝜒�ℎ,   𝕄𝕄𝑗𝑗� = 𝜒𝜒�ℎ + 𝑑𝑑𝑑𝑑(0),   𝕄𝕄𝑗𝑗�. 

It is easy to see that 

𝜒𝜒�ℎ + 𝑑𝑑𝑑𝑑(0),   𝕄𝕄𝑖𝑖∪𝑗𝑗� = 𝜒𝜒(ℎ + 𝑑𝑑𝑑𝑑(0),   𝕄𝕄𝑖𝑖)⊛𝜒𝜒�ℎ + 𝑑𝑑𝑑𝑑(0),   𝕄𝕄𝑗𝑗�
= 𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) ⊛𝜒𝜒�ℎ,   𝕄𝕄𝑗𝑗�
= 𝜒𝜒�ℎ,   𝕄𝕄𝑖𝑖∪𝑗𝑗�, 

where we do not need to know exactly what operator ⊛ does. 

Remark 4 
We can also prove it by the truth table 1. 

TABLE 1 
So 𝕄𝕄𝒊𝒊∪𝒋𝒋 and 𝕄𝕄𝒊𝒊 have the same period 

𝜒𝜒(ℎ,𝕄𝕄𝑖𝑖) 𝜒𝜒�ℎ,𝕄𝕄𝑗𝑗� 𝜒𝜒(ℎ + 𝑑𝑑𝑑𝑑(0) 𝜒𝜒(ℎ + 𝑑𝑑𝑑𝑑(0) 𝜒𝜒�ℎ,𝕄𝕄𝑖𝑖∪𝑗𝑗� 𝜒𝜒(ℎ + 𝑑𝑑𝑑𝑑(0) 

,𝕄𝕄𝑖𝑖) ,𝕄𝕄𝑗𝑗) ,𝕄𝕄𝑖𝑖∪𝑗𝑗) 

0 0 0 0 0 0 

0 1 0 1 1 1 

1 0 1 0 1 1 

1 1 1 1 1 1 

Lemma 7 
�𝕄𝕄0�0,𝑇𝑇(0)�� = 𝑇𝑇(0) − 𝑇𝑇(1).

Proof 
It is easy to see that 

�𝕄𝕄0�0,𝑇𝑇(0)�� = � ⋃
𝑚𝑚0∈𝕄𝕄0�0,𝑇𝑇(0)�

𝑚𝑚0� 

= � ⋃
(∀𝑘𝑘∈ℤ∧𝑚𝑚∈𝕄𝕄∘)�𝑚𝑚0=𝑘𝑘𝑘𝑘∧𝑚𝑚0∈�0,𝑇𝑇(0)��

𝑚𝑚0� 

= 𝑇𝑇(0)

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

� �
1
𝑚𝑚1

�
{𝑚𝑚1}⊆𝕄𝕄∘

|{𝑚𝑚1}|=1

− � �
1

𝑚𝑚1𝑚𝑚2
�

{𝑚𝑚1,𝑚𝑚2}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2

+

� �
1

𝑚𝑚1𝑚𝑚2𝑚𝑚3
�

{𝑚𝑚1,𝑚𝑚2,𝑚𝑚3}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2<𝑚𝑚3

−

⋯+ (−1)𝑛𝑛−1 � �
1

𝑚𝑚1𝑚𝑚2𝑚𝑚3⋯𝑚𝑚𝑛𝑛
�

{𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,⋯,𝑚𝑚𝑛𝑛}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2<𝑚𝑚3<⋯<𝑚𝑚𝑛𝑛

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

Then the alternating series can be reduced to showing that 

�𝕄𝕄0�0,𝑇𝑇(0)�� = 𝑇𝑇(0)�1 −
𝑇𝑇(1)
𝑇𝑇(0)� = 𝑇𝑇(0) − 𝑇𝑇(1). 

Lemma 8 

(∀𝑖𝑖,𝑎𝑎)�   �𝕄𝕄𝑖𝑖�𝑎𝑎,𝑎𝑎 + 𝑇𝑇(0)�� = 𝑇𝑇(0) − 𝑇𝑇(1)  �.

Proof: 
By Lemma 2, 

�𝕄𝕄𝑖𝑖�𝑎𝑎, 𝑎𝑎 + 𝑇𝑇(0)�� = |𝜆𝜆(𝕄𝕄𝑖𝑖 ,  −𝑎𝑎)[a − a,a + 𝑇𝑇(0) − a)|
= �𝕄𝕄𝑖𝑖−𝑎𝑎�0,𝑇𝑇(0)��
= �𝕄𝕄0�0,𝑇𝑇(0)��.

By Lemma 7, 
�𝕄𝕄𝑖𝑖�𝑎𝑎, 𝑎𝑎 + 𝑇𝑇(0)�� = �𝕄𝕄0�0,𝑇𝑇(0)�� = 𝑇𝑇(0) − 𝑇𝑇(1).

Lemma 9 
(∀𝑖𝑖, 𝑗𝑗,𝑎𝑎)�  �𝕄𝕄𝑖𝑖∪𝑗𝑗�𝑎𝑎, 𝑎𝑎 + 𝑇𝑇(0)�� ≤ 𝑇𝑇(0)−  𝑇𝑇(2) < 𝑇𝑇(0)  �.

Proof: 
If 

(∃𝑘𝑘 ∈ ℤ)(  𝑗𝑗 = 𝑖𝑖 + 𝑘𝑘𝑘𝑘(0)  ), 

then (by (2)) 

�𝕄𝕄𝑖𝑖∪𝑗𝑗�𝑎𝑎,𝑎𝑎 + 𝑇𝑇(0)�� = �𝕄𝕄𝑖𝑖∪𝑖𝑖�𝑎𝑎, 𝑎𝑎 + 𝑇𝑇(0)��
= �𝕄𝕄𝑖𝑖�𝑎𝑎, 𝑎𝑎 + 𝑇𝑇(0)��
= 𝑇𝑇(0)− 𝑇𝑇(1).

Otherwise, let us suppose 

(∀𝑚𝑚 ∈ 𝕄𝕄0)( 𝑗𝑗 − 𝑖𝑖 ≢ 0(𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚) ). 

It is similar to the proof of Lemma 7, we have 
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�𝕄𝕄𝑖𝑖∪𝑗𝑗�0,𝑇𝑇(0)�� =

𝑇𝑇(0)

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

� �
21

𝑚𝑚1
�

{𝑚𝑚1}⊆𝕄𝕄∘

|{𝑚𝑚1}|=1

− � �
22

𝑚𝑚1𝑚𝑚2
�

{𝑚𝑚1,𝑚𝑚2}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2

+

� �
23

𝑚𝑚1𝑚𝑚2𝑚𝑚3
�

{𝑚𝑚1,𝑚𝑚2,𝑚𝑚3}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2<𝑚𝑚3

−

⋯+ (−1)𝑛𝑛−1 � �
2𝑛𝑛

𝑚𝑚1𝑚𝑚2𝑚𝑚3⋯𝑚𝑚𝑛𝑛
�

{𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,⋯,𝑚𝑚𝑛𝑛}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2<𝑚𝑚3<⋯<𝑚𝑚𝑛𝑛

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

Then the alternating series can be reduced to showing that 

�𝕄𝕄𝑖𝑖∪𝑗𝑗�0,𝑇𝑇(0)�� = 𝑇𝑇(0) �1− 𝑇𝑇(2)
𝑇𝑇(0)� = 𝑇𝑇(0) − 𝑇𝑇(2).   (3) 

For the opposite case, there is at least one 𝑚𝑚 ∈ 𝕄𝕄∘  such that the 
coefficient of each term containing 𝑚𝑚 in the above alternating series is 
divided by 2. 

The reason is that 

(∃𝑚𝑚 ∈ 𝕄𝕄∘)( {𝑘𝑘𝑘𝑘 + 𝑗𝑗: 𝑘𝑘 ∈ ℤ} = {𝑘𝑘𝑘𝑘 + 𝑖𝑖:𝑘𝑘 ∈ ℤ} ). 

Therefore, 

�𝕄𝕄𝑖𝑖∪𝑗𝑗�0,𝑇𝑇(0)�� < 𝑇𝑇(0)�1−
𝑇𝑇(2)
𝑇𝑇(0)� = 𝑇𝑇(0) − 𝑇𝑇(2), 

when 

(∃𝑚𝑚 ∈ 𝕄𝕄0)( 𝑗𝑗 − 𝑖𝑖 ≡ 0(𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚) ). 

Obviously, 

𝑇𝑇(0) > 𝑇𝑇(1) > 𝑇𝑇(2) > 0. 

Combining with the above, we have 

�𝕄𝕄𝑖𝑖∪𝑗𝑗�0,𝑇𝑇(0)�� ≤ 𝑇𝑇(0) −  𝑇𝑇(2) < 𝑇𝑇(0).

By Lemma 6, 𝕄𝕄𝑖𝑖∪𝑗𝑗  is periodic with 𝑇𝑇(0), and considering Lemma 8, 
we can get 

�𝕄𝕄𝑖𝑖∪𝑗𝑗�𝑎𝑎, 𝑎𝑎 + 𝑇𝑇(0)�� = �𝕄𝕄𝑖𝑖∪𝑗𝑗�0,𝑇𝑇(0)�� ≤ 𝑇𝑇(0) − 𝑇𝑇(2) < 𝑇𝑇(0). 

Lemma 10 

(∃𝜂𝜂 > 0) �(∀𝑖𝑖, 𝑗𝑗, 𝑎𝑎)�  �𝕄𝕄𝑖𝑖∪𝑗𝑗[𝑎𝑎,𝑎𝑎 + 𝜂𝜂)� < 𝜂𝜂  ��. 

Proof: 
By Lemma 9, there are at least 𝑇𝑇(2) numbers in any range 𝑇𝑇(0) that 
make 

𝜒𝜒�ℎ,   𝕄𝕄𝑖𝑖∪𝑗𝑗� = 0, 

where 

ℎ ∈ �𝑎𝑎, 𝑎𝑎 + 𝑇𝑇(0)�. 

It can also be expressed as 

(∀𝑖𝑖, 𝑗𝑗,𝑎𝑎)�� � 1
ℎ∈�𝑎𝑎,𝑎𝑎+𝑇𝑇(0)�∧𝜒𝜒�ℎ, 𝕄𝕄𝑖𝑖∪𝑗𝑗�=0

� ≥ 𝑇𝑇(2) > 0� 

So that 

0 < 𝜂𝜂 ≤ 𝑇𝑇(0). 

On the basis of Lemma 10 we have 

Lemma 11 
(∀𝑖𝑖, 𝑗𝑗,𝑎𝑎) ��∃ ℎ ∈ [𝑎𝑎,𝑎𝑎 + 𝜂𝜂)�(  𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒(ℎ + 𝑗𝑗 − 𝑖𝑖,   𝕄𝕄𝑖𝑖) = 0  )�. 

Proof: 
By Lemma 10, 

(∀𝑖𝑖, 𝑗𝑗,a) ��∃ℎ0 ∈ [𝑎𝑎,𝑎𝑎 + 𝜂𝜂)��  𝜒𝜒�ℎ0,   𝕄𝕄𝑖𝑖∪𝑗𝑗� = 0  ��,

so that 

𝜒𝜒(ℎ0,   𝕄𝕄𝑖𝑖) = 𝜒𝜒�ℎ0,   𝕄𝕄𝑗𝑗� = 0.

By Lemma 2, 

𝜒𝜒�ℎ0,   𝕄𝕄𝑗𝑗� = 𝜒𝜒(ℎ0 + 𝑗𝑗 − 𝑖𝑖,   𝕄𝕄𝑖𝑖). 

Therefore, 

𝜒𝜒(ℎ0,   𝕄𝕄𝑖𝑖) = 𝜒𝜒(ℎ0 + 𝑗𝑗 − 𝑖𝑖,   𝕄𝕄𝑖𝑖) = 0.

Lemma 12 
For t ≥ 1, 

(∀𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,⋯ ,𝑚𝑚𝑡𝑡 ∈ 𝕄𝕄∘)��𝜌𝜌(𝛿𝛿)
𝛿𝛿∈𝒯𝒯

≤ �𝜗𝜗(𝛿𝛿)
𝛿𝛿∈𝒯𝒯

� 

where 

  𝜌𝜌�(𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,⋯ )� =

⎩
⎪
⎨

⎪
⎧0     (∃j > i ≥ 1)�𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗 ∧ 𝑎𝑎𝑖𝑖 ∤ (𝑗𝑗 − 𝑖𝑖)�,

�
𝑚𝑚∈𝕄𝕄∘∧𝑚𝑚|(𝑎𝑎1𝑎𝑎2𝑎𝑎3⋯ )1𝑚𝑚

  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.

and 

𝜗𝜗�(𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,⋯ )� =
1

𝑎𝑎1𝑎𝑎2𝑎𝑎3 ⋯
, 

and 
 𝒯𝒯 =

⋃
{ℎ1,ℎ2,ℎ3,⋯,ℎ𝑡𝑡}={1,2,3,⋯,𝑡𝑡}

��𝑚𝑚ℎ1 ,𝑚𝑚ℎ2 ,𝑚𝑚ℎ3 ,⋯ ,𝑚𝑚ℎ𝑡𝑡�� .

Proof: 
Let 

(∀𝜔𝜔 ≥ 1)(𝑚𝑚𝑡𝑡+𝜔𝜔 = 𝑝𝑝𝑛𝑛+𝜔𝜔),

and 

𝒯𝒯(𝑛𝑛) = ⋃
{ℎ1,ℎ2,ℎ3,⋯,ℎ𝑛𝑛}={1,2,3,⋯,𝑛𝑛}

��𝑚𝑚ℎ1 ,𝑚𝑚ℎ2 ,𝑚𝑚ℎ3 ,⋯ ,𝑚𝑚ℎ𝑛𝑛��.

Then 
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� � 1
𝛿𝛿∈𝒯𝒯∧𝜌𝜌(𝛿𝛿)≠0

� /|𝒯𝒯| ≤ lim
𝑛𝑛→∞

� � 1
𝛿𝛿∈𝒯𝒯(𝑛𝑛)∧𝜌𝜌(𝛿𝛿)≠0

� /|𝒯𝒯(𝑛𝑛)|

= � � 𝑚𝑚
𝑚𝑚∈𝕄𝕄∘∧𝑚𝑚|(𝑚𝑚1𝑚𝑚2𝑚𝑚3⋯𝑚𝑚𝑡𝑡)

� /(𝑚𝑚1𝑚𝑚2𝑚𝑚3⋯𝑚𝑚𝑡𝑡).

So that 

�𝜌𝜌(𝛿𝛿)
𝛿𝛿∈𝒯𝒯

= � � 1
𝛿𝛿∈𝒯𝒯∧𝜌𝜌(𝛿𝛿)≠0

�� �
1
𝑚𝑚

𝑚𝑚∈𝕄𝕄∘∧𝑚𝑚|(𝑚𝑚1𝑚𝑚2𝑚𝑚3⋯𝑚𝑚𝑡𝑡)

�

≤
|𝒯𝒯|

𝑚𝑚1𝑚𝑚2𝑚𝑚3⋯𝑚𝑚𝑡𝑡
= �𝜗𝜗(𝛿𝛿)

𝛿𝛿∈𝒯𝒯

.

On the basis of Lemma 12 we have 

Lemma 13 
For 𝑡𝑡 ≥ 1, ∑ 𝜌𝜌(𝛿𝛿)𝛿𝛿∈𝒯𝒯 ≤ ∑ 𝜗𝜗(𝛿𝛿)𝛿𝛿∈𝒯𝒯  

Where 

 𝒯𝒯 = ⋃
𝑚𝑚1∈𝕄𝕄∘

𝑚𝑚2∈𝕄𝕄∘

⋮
𝑚𝑚𝑡𝑡∈𝕄𝕄∘

{(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,⋯ ,𝑚𝑚𝑡𝑡)}

Proof: 
Let 

𝒥𝒥(𝑝𝑝) = � �
0     𝑚𝑚𝑑𝑑 ≠ 𝑝𝑝,
1     𝑚𝑚𝑑𝑑 = 𝑝𝑝.

𝑑𝑑∈[1,𝑡𝑡]

 

and 

𝑠𝑠 = � 1
ℎ1≥0∧ℎ2≥0∧⋯∧ℎ𝑛𝑛≥0
ℎ1+ℎ2+⋯+ℎ𝑛𝑛=𝑡𝑡

, 

and 

{𝒯𝒯1,𝒯𝒯2,⋯ ,𝒯𝒯𝑠𝑠}

= ⋃
ℎ1≥0∧ℎ2≥0∧⋯∧ℎ𝑛𝑛≥0
ℎ1+ℎ2+⋯+ℎ𝑛𝑛=𝑡𝑡

(⬚ 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧

⋃
𝑚𝑚1∈𝕄𝕄∘

𝑚𝑚2∈𝕄𝕄∘

⋮
𝑚𝑚𝑡𝑡∈𝕄𝕄∘

(∀𝑑𝑑∈[1,𝑛𝑛])(𝒥𝒥(𝑝𝑝𝑑𝑑)=ℎ𝑑𝑑)

{(𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,⋯ ,𝑚𝑚𝑡𝑡)}

⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

. 

It is easy to see that 

𝒯𝒯 = 𝒯𝒯1 ∪ 𝒯𝒯2 ∪ ⋯∪ 𝒯𝒯𝑠𝑠, 

and 

(∀𝑠𝑠 ≥ 𝑗𝑗 > 𝑖𝑖 ≥ 1)�𝒯𝒯𝑗𝑗 ∩ 𝒯𝒯𝑖𝑖 = 𝜙𝜙�. 

Combining this with Lemma 12, we have 

�𝜌𝜌(𝛿𝛿)
𝛿𝛿∈𝒯𝒯

= � � 𝜌𝜌(𝛿𝛿𝑑𝑑)
𝛿𝛿𝑑𝑑∈𝒯𝒯𝑑𝑑

≤
𝑑𝑑∈[1,𝑠𝑠]

� � 𝜗𝜗(𝛿𝛿𝑑𝑑)
𝛿𝛿𝑑𝑑∈𝒯𝒯𝑑𝑑𝑑𝑑∈[1,𝑠𝑠]

= �𝜗𝜗(𝛿𝛿)
𝛿𝛿∈𝒯𝒯

. 

Similarly, for 

(∀𝜔𝜔 ≥ 1)(𝑚𝑚𝑡𝑡+𝜔𝜔 = 𝑝𝑝𝑛𝑛+𝜔𝜔),

and 

𝒯𝒯(𝑛𝑛) = ⋃
{ℎ1,ℎ2,ℎ3,⋯,ℎ𝑛𝑛}={1,2,3,⋯,𝑛𝑛}

��𝑚𝑚ℎ1 ,𝑚𝑚ℎ2 ,𝑚𝑚ℎ3 ,⋯ ,𝑚𝑚ℎ𝑛𝑛��,

we also have 

� 𝜌𝜌(𝛿𝛿)
𝛿𝛿∈𝒯𝒯(𝑛𝑛)

≤ � 𝜗𝜗(𝛿𝛿)
𝛿𝛿∈𝒯𝒯(𝑛𝑛)

. 

Lemma 14 

(∀𝑥𝑥 ≥ 3) �∏ (1 − 2𝑝𝑝−1)2<𝑝𝑝≤𝑥𝑥 ≥ 0.4
ln2𝑥𝑥

�. 

Proof:  
By Mertens’ second theorem, 

� (𝑝𝑝−1)
𝑝𝑝≤𝑥𝑥

= lnln𝑥𝑥 + 𝑀𝑀 + 𝑂𝑂(1/ln𝑥𝑥). 

The value of M is approximately 

𝑀𝑀 ≈ 0.261497212847642784⋯. 

For 𝑝𝑝 > 2, 

� (𝑝𝑝−1)
2<𝑝𝑝≤𝑥𝑥

= lnln𝑥𝑥 + 𝑀𝑀′ + 𝑂𝑂(1/ln𝑥𝑥). 

The value of M' is approximately 

𝑀𝑀′ ≈ −0.238502787152357217⋯. 

Since 

|ln(1 − 2𝑝𝑝−1) + 2𝑝𝑝−1| = �� (𝑡𝑡−1 − 1)𝑑𝑑𝑑𝑑
1−2𝑝𝑝−1

1
�

= �
2
𝑝𝑝
−

2
𝑝𝑝
−

22

2𝑝𝑝2
−

23

3𝑝𝑝3
−

24

4𝑝𝑝4
− ⋯�

<
22

2𝑝𝑝2
+

23

2𝑝𝑝3
+

24

2𝑝𝑝4
+ ⋯

=
2

𝑝𝑝(𝑝𝑝 − 2) ,

and 

�
2

𝑝𝑝(𝑝𝑝 − 2)
𝑝𝑝>2

 

is convergent, the series 

� (ln(1− 2𝑝𝑝−1) + 2𝑝𝑝−1)
𝑝𝑝>2

 

must be convergent. Because the series 
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� (𝑝𝑝−1)
𝑝𝑝>2

 

is divergent and so the product 

� (1− 2𝑝𝑝−1)
𝑝𝑝>2

 

must diverge also (to zero). We can deduce that 

� (ln(1− 2𝑝𝑝−1) + 2𝑝𝑝−1)
2<𝑝𝑝≤𝑥𝑥

 

  = � (ln(1− 2𝑝𝑝−1) + 2𝑝𝑝−1)
𝑝𝑝

−� (ln(1− 2𝑝𝑝−1) + 2𝑝𝑝−1)
𝑝𝑝>𝑥𝑥

  = � (ln(1− 2𝑝𝑝−1) + 2𝑝𝑝−1)
𝑝𝑝

+ 𝑂𝑂� �
1

𝑝𝑝(𝑝𝑝 − 2)�
𝑝𝑝>𝑥𝑥

 

= � (ln(1− 2𝑝𝑝−1) + 2𝑝𝑝−1)
𝑝𝑝

+ 𝑂𝑂� (𝑥𝑥−1)
𝑝𝑝>𝑥𝑥

. 

ln� � (1− 2𝑝𝑝−1)
2<𝑝𝑝≤𝑥𝑥

�  

= −2� (𝑝𝑝−1)
𝑝𝑝≤𝑥𝑥

+ � (ln(1− 2𝑝𝑝−1) + 2𝑝𝑝−1)
2<𝑝𝑝≤𝑥𝑥

 

= −2𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 2𝑀𝑀′ + � (ln(1− 2𝑝𝑝−1) + 2𝑝𝑝−1)
2<𝑝𝑝≤𝑥𝑥

+ 𝑂𝑂(𝑙𝑙𝑙𝑙−1𝑥𝑥)

It’s known from numerical calculation 

� (ln(1− 2𝑝𝑝−1) + 2𝑝𝑝−1)
𝑝𝑝>2

≈ −0.660393386913. 

Combining with the above, we can crudely estimate 

� (1− 2𝑝𝑝−1)
2<𝑝𝑝≤𝑥𝑥

≥
0.4

ln2𝑥𝑥 

through numerical analysis. 

Lemma 15 

(∀𝑥𝑥 ≥ 1) � ⌊𝑥𝑥⌋!

�⌊𝑥𝑥2⌋!�
2 < 6

𝑥𝑥
2�. 

Proof:  
If ⌊𝑥𝑥⌋ = 2𝑘𝑘 is even, then 

⌊𝑥𝑥⌋!

�⌊𝑥𝑥2⌋!�
2 = �

2𝑘𝑘
𝑘𝑘 � ≤ 22𝑘𝑘 = 4

𝑥𝑥
2 ≤ 22𝑘𝑘+1 �1 +

1
2
�
𝑘𝑘

< 6
𝑥𝑥
2,

because it’s the largest binomail coefficient in the binomail expansion 
of (1 + 1)2𝑘𝑘. Otherwise, ⌊𝑥𝑥⌋ = 2𝑘𝑘 + 1 is odd, then 

⌊𝑥𝑥⌋!

�⌊𝑥𝑥2⌋!�
2 = �

2𝑘𝑘 + 1
𝑘𝑘 � (𝑘𝑘 + 1) ≤ 22𝑘𝑘(𝑘𝑘 + 1) ≤ 22𝑘𝑘+1 �1 +

1
2
�
𝑘𝑘

< 6
𝑥𝑥
2 . 

Lemma 16 
Upper bounds exist fo r bo th 𝜃𝜃(𝑥𝑥) and 𝜓𝜓(𝑥𝑥) that (∀𝑥𝑥 ≥ 1)(  𝜃𝜃(𝑥𝑥) ≤
𝜓𝜓(𝑥𝑥) < 𝑥𝑥ln6 ). 

Proof: 
By Definition 9, we have 

ln(⌊𝑥𝑥⌋!) = 𝜓𝜓(𝑥𝑥) + 𝜓𝜓 �
𝑥𝑥
2� + 𝜓𝜓�

𝑥𝑥
3� + 𝜓𝜓 �

𝑥𝑥
4� + ⋯. 

Changing 𝑥𝑥 to 
𝑥𝑥
2
, and inserting -2ln �⌊𝑥𝑥

2
⌋!� into the above equation we

obtain 

ln(⌊𝑥𝑥⌋!) − 2ln �⌊
𝑥𝑥
2
⌋!� = 𝜓𝜓(𝑥𝑥) −𝜓𝜓�

𝑥𝑥
2
� + 𝜓𝜓�

𝑥𝑥
3
� − 𝜓𝜓 �

𝑥𝑥
4
�+ ⋯. 

It is obvious that 

𝜓𝜓(𝑥𝑥) ≥ 𝜓𝜓 �
𝑥𝑥
2� ≥ 𝜓𝜓 �

𝑥𝑥
3� ≥ 𝜓𝜓�

𝑥𝑥
4� ≥ ⋯, 

so that 

𝜓𝜓(𝑥𝑥)− 𝜓𝜓 �
𝑥𝑥
2� ≤ ln(⌊𝑥𝑥⌋!) − 2ln �⌊

𝑥𝑥
2⌋!� = ln�

⌊𝑥𝑥⌋!

�⌊𝑥𝑥2⌋!�
2�.

Combining this with Lemma 15, we can get 

𝜓𝜓(𝑥𝑥)− 𝜓𝜓 �
𝑥𝑥
2� < �

𝑥𝑥
2� ln6. 

Changing 𝑥𝑥 to 𝑥𝑥
2
, 𝑥𝑥
4
, 𝑥𝑥
8
, ⋯, we have 

𝜓𝜓�
𝑥𝑥
2
� − 𝜓𝜓 �

𝑥𝑥
4
� < �

𝑥𝑥
4
� ln6 

𝜓𝜓�
𝑥𝑥
4
� − 𝜓𝜓 �

𝑥𝑥
8
� < �

𝑥𝑥
8
� ln6 

𝜓𝜓�
𝑥𝑥
8
� − 𝜓𝜓 �

𝑥𝑥
16
� < �

𝑥𝑥
16
� ln6 

⋮ 

Adding up them all, we have 

𝜓𝜓(𝑥𝑥) < 𝑥𝑥ln6. 

It is easy to see that the relationship between 𝜃𝜃(𝑥𝑥) and 𝜓𝜓(𝑥𝑥) is given 
by 

𝜓𝜓(𝑥𝑥) = �𝜃𝜃�𝑥𝑥
1
𝑑𝑑�

𝑑𝑑≥1

. 

There is the fact that 

𝜃𝜃(𝑥𝑥) ≤ 𝜓𝜓(𝑥𝑥) < 𝑥𝑥ln6. 

Lemma 17 
For 𝑥𝑥 ≥ 3, 

Let 

ϱ(𝑥𝑥) = �∏ 𝑝𝑝2<𝑝𝑝≤𝑥𝑥 ��1−∏ (1− 2𝑝𝑝−1)2<𝑝𝑝≤𝑥𝑥 �
�ln

2𝑥𝑥
0.4 �𝑥𝑥ln6, then ϱ(𝑥𝑥) < 1. 

Changing we have
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Proof: 
By Lemma 16, 

ln� � 𝑝𝑝
2<𝑝𝑝≤𝑥𝑥

� < 𝜃𝜃(𝑥𝑥) < 𝑥𝑥ln6, 

thus 

� � 𝑝𝑝
2<𝑝𝑝≤𝑥𝑥

� < exp{𝑥𝑥ln6}. 

By Lemma 14, 

�1 − � (1− 2𝑝𝑝−1)
2<𝑝𝑝≤𝑥𝑥

� ≤ �1 −
0.4

ln2𝑥𝑥
�. 

Combining these results with numerical analysis we obtain 

ϱ(𝑥𝑥) < exp{𝑥𝑥ln6}�1 −
0.4

ln2𝑥𝑥
�
�ln

2𝑥𝑥
0.4 �𝑥𝑥ln6

< exp{𝑥𝑥ln6}exp{−𝑥𝑥ln6}
= 1.

ESTIMATION OF 𝑳𝑳𝟐𝟐(𝒂𝒂, 𝒕𝒕) AND 𝜼𝜼 

In this section we estimate 𝐿𝐿2(𝑎𝑎, 𝑡𝑡) and 𝜂𝜂.

First, for 𝑡𝑡 ≥ 0, let 

𝐿𝐿1(𝑎𝑎, 𝑡𝑡) = {𝑚𝑚:   {𝑚𝑚,𝑚𝑚 + 1,𝑚𝑚 + 2,⋯ ,𝑚𝑚 + 𝑡𝑡} ⊆ 𝕄𝕄𝑖𝑖[𝑎𝑎,𝑎𝑎 + 𝑇𝑇(0) + 𝑡𝑡)}. 

We can see that for each element in 𝐿𝐿1(𝑎𝑎, 𝑡𝑡), it denotes that there are
(𝑡𝑡 + 1) consecutive elements in 𝕄𝕄𝑖𝑖[𝑎𝑎,𝑎𝑎 + 𝑇𝑇(0) + 𝑡𝑡). We have

|𝐿𝐿1(𝑎𝑎, 𝑡𝑡)| ≤ 𝑇𝑇(0)�1−
𝑇𝑇(1)
𝑇𝑇(0)�

𝑡𝑡+1

. 

Proof: 
Considering the proof of Lemma 7 and Lemma 8, and combining 
this with Lemma 12 and Lemma 13, we have 

|𝐿𝐿1(𝑎𝑎, 𝑡𝑡)| = � ⋂
𝑤𝑤∈[0,𝑡𝑡]

𝕄𝕄𝑖𝑖+𝑤𝑤�𝑎𝑎, 𝑎𝑎 + 𝑇𝑇(0)�� ≤

𝑇𝑇(0)

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

� �
1
𝑚𝑚1

�
{𝑚𝑚1}⊆𝕄𝕄∘

|{𝑚𝑚1}|=1

− � �
1

𝑚𝑚1𝑚𝑚2
�

{𝑚𝑚1,𝑚𝑚2}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2

+

� �
1

𝑚𝑚1𝑚𝑚2𝑚𝑚3
�

{𝑚𝑚1,𝑚𝑚2,𝑚𝑚3}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2<𝑚𝑚3

−

⋯+ (−1)𝑛𝑛−1 � �
1

𝑚𝑚1𝑚𝑚2𝑚𝑚3⋯𝑚𝑚𝑛𝑛
�

{𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,⋯,𝑚𝑚𝑛𝑛}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2<𝑚𝑚3<⋯<𝑚𝑚𝑛𝑛

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑡𝑡+1

= 𝑇𝑇(0)�1 −
𝑇𝑇(1)
𝑇𝑇(0)�

𝑡𝑡+1

. 

i.e.

|𝐿𝐿1(𝑎𝑎, 𝑡𝑡)| ≤ 𝑇𝑇(0)�1−
𝑇𝑇(1)
𝑇𝑇(0)�

𝑡𝑡+1

. 

Next, let us look at the case of 

𝐿𝐿2(𝑎𝑎, 𝑡𝑡) = �𝑚𝑚: {𝑚𝑚,𝑚𝑚 + 1,𝑚𝑚 + 2,⋯ ,𝑚𝑚 + 𝑡𝑡} ⊆ 𝕄𝕄𝑖𝑖∪𝑗𝑗[𝑎𝑎, 𝑎𝑎 + 𝑇𝑇(0) + 𝑡𝑡)�.

We can also see that for each element in 𝐿𝐿2(𝑎𝑎, 𝑡𝑡), it denotes that there
are (𝑡𝑡 + 1) consecutive elements in 𝕄𝕄𝑖𝑖∪𝑗𝑗[𝑎𝑎,𝑎𝑎 + 𝑇𝑇(0) + 𝑡𝑡). 

It is similar to the case of 𝐿𝐿1(𝑎𝑎, 𝑡𝑡), combining this with Lemma 9 and
Lemma 13, we have 

|𝐿𝐿2(𝑎𝑎, 𝑡𝑡 + 1)| ≤

𝑇𝑇(0)

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

� �
21

𝑚𝑚1
�

{𝑚𝑚1}⊆𝕄𝕄∘

|{𝑚𝑚1}|=1

− � �
22

𝑚𝑚1𝑚𝑚2
�

{𝑚𝑚1,𝑚𝑚2}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2

+

� �
23

𝑚𝑚1𝑚𝑚2𝑚𝑚3
�

{𝑚𝑚1,𝑚𝑚2,𝑚𝑚3}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2<𝑚𝑚3

−

⋯+ (−1)𝑛𝑛−1 � �
2𝑛𝑛

𝑚𝑚1𝑚𝑚2𝑚𝑚3⋯𝑚𝑚𝑛𝑛
�

{𝑚𝑚1,𝑚𝑚2,𝑚𝑚3,⋯,𝑚𝑚𝑛𝑛}⊆𝕄𝕄∘

𝑚𝑚1<𝑚𝑚2<𝑚𝑚3<⋯<𝑚𝑚𝑛𝑛

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

𝑡𝑡+1

= 𝑇𝑇(0)�1 −
𝑇𝑇(2)
𝑇𝑇(0)�

𝑡𝑡+1

. 

Now we can deduce that 

(∀𝑡𝑡 ≥ 0)  �  |𝐿𝐿2(𝑎𝑎, 𝑡𝑡)| ≤ 𝑇𝑇(0) �1 − 𝑇𝑇(2)
𝑇𝑇(0)�

t+1
  �.  (4.1) 

Considering the relationship between 𝐿𝐿2(𝑎𝑎, 𝑡𝑡) and 𝜂𝜂 (in Lemma 10, 
Lemma 11), we have 

𝜂𝜂 ≥ inf{𝑚𝑚 + 1:  𝑚𝑚 ≥ 0 ∧ |𝐿𝐿2(𝑎𝑎,𝑚𝑚)| = 0},  (4.2) 

according to the definition of 𝐿𝐿2(𝑎𝑎, 𝑡𝑡)

For the next proof of theorems, we assume that there exists 𝜂𝜂 that 
satisfies 

𝜂𝜂 ≤ 𝑝𝑝𝑛𝑛2

8
.   (4.3) 

It requires 

�𝐿𝐿2 �𝑎𝑎, ⌊
𝑝𝑝𝑛𝑛2

8 ⌋ − 1�� = 0. 

By (4.1), we have 

�𝐿𝐿2 �𝑎𝑎, ⌊
𝑝𝑝𝑛𝑛2

8 ⌋ − 1�� < 𝑇𝑇(0)�1 −
𝑇𝑇(2)
𝑇𝑇(0)�

⌊𝑝𝑝𝑛𝑛
2

8 ⌋

= �� 𝑝𝑝
𝑝𝑝∈𝕄𝕄∘

��1 − � (1− 2𝑝𝑝−1)
𝑝𝑝∈𝕄𝕄∘

�

⌊𝑝𝑝𝑛𝑛
2

8 ⌋

.
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By Lemma 17, we know that we have 

�𝐿𝐿2 �𝑎𝑎, ⌊
𝑝𝑝𝑛𝑛2

8 ⌋ − 1�� < 1 

when 

�ln
2𝑝𝑝𝑛𝑛
0.4

� 𝑝𝑝𝑛𝑛ln6 < ⌊𝑝𝑝𝑛𝑛
2

8
⌋.  (4.4) 

Let 

𝑓𝑓(𝑥𝑥) =
𝑥𝑥2

8 − �
ln2𝑥𝑥
0.4 �𝑥𝑥ln6. 

Then for 𝑥𝑥 ≠ 0, 

�
𝑓𝑓(𝑥𝑥)
𝑥𝑥 � ′ =

1
8 −

2ln6ln𝑥𝑥
0.4𝑥𝑥 . 

We can easily get a crude result that 

�
𝑓𝑓(𝑥𝑥)
𝑥𝑥 � ′ > 0 

when 𝑥𝑥 > 436 through numerical analysis. 
So that 𝑓𝑓(𝑥𝑥) is monotonically increasing when 𝑥𝑥 > 436. 

Next, the numerical analysis is continued, we can easily get another 
crude result that 

𝑓𝑓(𝑥𝑥) > 0 

when 

𝑥𝑥 > 2096 . 
Now we know that the condition (4-4) is satisfied when 𝑝𝑝𝑛𝑛 > 2096. 
Therefore, (4-3) holds for 𝑝𝑝𝑛𝑛 > 2096. 

i.e.

(∀𝑝𝑝𝑛𝑛 > 2096)�(∃𝜂𝜂)�𝜂𝜂 ≤
𝑝𝑝𝑛𝑛2

8 �
�. 

PROOF OF THEOREMS 

We are now in the position to prove Theorem 1 and 2. 
For 𝑛𝑛  with 𝑝𝑝𝑛𝑛 ≤ 2096 , we know that the theorems hold through 
computer verification. 

Otherwise, we have 

𝜂𝜂 ≤
𝑝𝑝𝑛𝑛2

8 . 

Since 

𝜂𝜂 ≤
𝑝𝑝𝑛𝑛2

8 <
𝑝𝑝𝑛𝑛2 + 1

2 , 

combining this with Lemma 11, we have 

�∀𝑎𝑎, 𝑖𝑖, 𝑗𝑗 ∈ �𝑖𝑖 + 1, 𝑖𝑖 +
𝑝𝑝𝑛𝑛 + 1

2
�� 

��∃ℎ ∈ �𝑎𝑎, 𝑎𝑎 +
𝑝𝑝𝑛𝑛2 + 1

2
�� (  𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒(ℎ + 𝑗𝑗 − 𝑖𝑖,   𝕄𝕄𝑖𝑖) = 0  )� .

And let 

𝑎𝑎 = 𝑖𝑖 +
𝑇𝑇(0) + 𝑝𝑝𝑛𝑛

2 , 

we have 

 �∀𝑖𝑖, 𝑗𝑗 ∈ �𝑖𝑖 + 1, 𝑖𝑖 + 𝑝𝑝𝑛𝑛+1
2
�� ��∃ℎ ∈ �𝑖𝑖 + 𝑇𝑇(0)+𝑝𝑝𝑛𝑛

2
,   (5.1) 

𝑖𝑖 +
𝑇𝑇(0) + 𝑝𝑝𝑛𝑛2 + 𝑝𝑝𝑛𝑛 + 1

2 �� (  𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒(ℎ + 𝑗𝑗,   𝕄𝕄𝑖𝑖) = 0  )� .

Then we can deduce that for every ℎ in (5.1) satisfying the condition 

(  𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒(ℎ + 𝑗𝑗,   𝕄𝕄𝑖𝑖) = 0  ), 

So, we have 𝑞𝑞1 and 𝑞𝑞2 are both prime numbers, defined by 

𝑞𝑞1 = 2(ℎ − 𝑖𝑖) − 𝑇𝑇(0),
𝑞𝑞2 = 𝑞𝑞1 + 2𝑗𝑗 = 2(ℎ − 𝑖𝑖) − 𝑇𝑇(0) + 2𝑗𝑗.

Proof: 

Since 

𝜒𝜒 (ℎ,  𝕄𝕄 𝑖𝑖 ) = 𝜒𝜒 (ℎ + 𝑗𝑗 ,  

𝕄𝕄 𝑖𝑖 ) = 0,
we have 

𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒�ℎ − 𝑖𝑖,   𝜆𝜆(𝕄𝕄𝑖𝑖 ,  0 − 𝑖𝑖)� = 𝜒𝜒(ℎ − 𝑖𝑖,   𝕄𝕄0) = 0.

Because the prime number 2 does not belong to 𝕄𝕄∘, 
by Lemma 4, we have 

𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒(2(ℎ − 𝑖𝑖) + 𝑖𝑖,   𝕄𝕄𝑖𝑖) = 0.

Combining this with Lemma 5 we have 

𝜒𝜒(ℎ,   𝕄𝕄𝑖𝑖) = 𝜒𝜒( 2(ℎ − 𝑖𝑖) + 𝑖𝑖 − 𝑇𝑇(0),   𝕄𝕄𝑖𝑖) = 𝜒𝜒( 𝑞𝑞1,   𝕄𝕄0) = 0.

i.e.

  (∀𝑚𝑚 ∈ 𝕄𝕄∘)( 𝑞𝑞1 ≢ 0(𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚) ).   (5.2) 

Similarly, we have 

𝜒𝜒(ℎ + 𝑗𝑗,   𝕄𝕄𝑖𝑖) = 𝜒𝜒( 2(ℎ − 𝑖𝑖) + 𝑖𝑖 − 𝑇𝑇(0) + 2𝑗𝑗,   𝕄𝕄𝑖𝑖) = 𝜒𝜒(𝑞𝑞2,   𝕄𝕄0) = 0.

i.e.

 (∀𝑚𝑚 ∈ 𝕄𝕄∘)(  𝑞𝑞2 ≢ 0(𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚)  ).  (5.3) 

Noting that the domain of ℎ, we can deduce 

𝑞𝑞1 ∈ [𝑝𝑝𝑛𝑛,   𝑝𝑝𝑛𝑛(𝑝𝑝𝑛𝑛 + 1)],
𝑞𝑞2 ∈ [𝑝𝑝𝑛𝑛 + 2,   𝑝𝑝𝑛𝑛(𝑝𝑝𝑛𝑛 + 2)].

Obviously, 

𝑇𝑇(0) ≢ 0(𝑚𝑚𝑚𝑚𝑚𝑚  2),
𝑞𝑞1 ≢ 0(𝑚𝑚𝑚𝑚𝑚𝑚  2),
𝑞𝑞2 ≢ 0(𝑚𝑚𝑚𝑚𝑚𝑚  2).



The gaps between primes 

11 

And 𝕄𝕄∘ contains all odd primes not greater than 𝑝𝑝𝑛𝑛, so that

∀𝑤𝑤 ∈ [𝑝𝑝𝑛𝑛,   𝑝𝑝𝑛𝑛(𝑝𝑝𝑛𝑛 + 2)],

if 𝑤𝑤 is not a prime number, there must be 

�∃𝑚𝑚 ∈ (𝕄𝕄∘ ∪ {2})�(  𝑤𝑤 ≡ 0(𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚)  ). 

Thus, combined with (5.2) and (5.3), 𝑞𝑞1 and 𝑞𝑞2 must be prime 
numbers. 
This implies that 

for every 𝑝𝑝𝑠𝑠 > 2096, there must be primes 𝑝𝑝𝑎𝑎 and 𝑝𝑝𝑏𝑏 between 𝑝𝑝𝑠𝑠 and 
𝑝𝑝𝑠𝑠2 + 2𝑝𝑝𝑠𝑠,

�∀𝑑𝑑 ∈ �1,
𝑝𝑝𝑠𝑠 + 1

2
�� ( 𝑝𝑝𝑎𝑎 − 𝑝𝑝𝑏𝑏 = 2𝑑𝑑 ).

i.e.

(∀𝑝𝑝𝑠𝑠 > 2096)�(∃𝑝𝑝𝑎𝑎,𝑝𝑝𝑏𝑏 ∈ [𝑝𝑝𝑠𝑠,𝑝𝑝𝑠𝑠2 + 2𝑝𝑝𝑠𝑠]) 

 ��∀𝑑𝑑 ∈ �1,
𝑝𝑝𝑠𝑠 + 1

2
�� ( 𝑝𝑝𝑎𝑎 − 𝑝𝑝𝑏𝑏 = 2𝑑𝑑 )��.

Since there are infinite primes, we can conclude that for any positive 
integer 𝑑𝑑, there are infinitely many prime gaps of size 2𝑑𝑑. This proves 
Theorem 1.  

Next, let us transform the problem of gaps between primes into the 
problem of sums of two primes. 
Let 

𝑎𝑎 = 𝑖𝑖 +
(𝑇𝑇(0) + 𝑝𝑝1)

2 . 

Since 

𝜂𝜂 ≤
𝑝𝑝𝑛𝑛2

8 , 

combining this with Lemma 10, we have 

�∀𝑖𝑖, 𝑗𝑗 ∈ �𝑖𝑖 + 𝑝𝑝1 + ⌈𝑝𝑝n
2

8
⌉, 𝑖𝑖 + 𝑝𝑝1 + ⌊𝑝𝑝𝑛𝑛

2

2
⌋�� ��∃ℎ ∈ �𝑖𝑖 + 𝑇𝑇(0)+𝑝𝑝1

2
,     (5.4) 

𝑖𝑖 +
𝑇𝑇(0) + 𝑝𝑝1

2 + ⌈
𝑝𝑝n
2

8 ⌉�
�  �  𝜒𝜒�ℎ,   𝕄𝕄𝑖𝑖∪𝑗𝑗� = 0  ��. 

Then we can deduce that for every ℎ in (5.4) satisfying the condition 

�  𝜒𝜒�ℎ,   𝕄𝕄𝑖𝑖∪𝑗𝑗� = 0  �, 

so we have 𝑞𝑞1 and 𝑞𝑞2 are both prime numbers, defined by 

𝑞𝑞1 = 2(ℎ − 𝑖𝑖) − 𝑇𝑇(0),
𝑞𝑞2 = 2(𝑗𝑗 − ℎ) + 𝑇𝑇(0).

Proof: 

By the condition, 

𝜒𝜒 (ℎ,  𝕄𝕄 𝑖𝑖 ) = 𝜒𝜒 �ℎ,  𝕄𝕄 j� = 0.

Then it is similar to the proof of Theorem 1, 

𝜒𝜒 (𝑞𝑞 1,  𝕄𝕄 0) = 𝜒𝜒 (2(ℎ − 𝑖𝑖 ),  𝕄𝕄 0) = 𝜒𝜒 (ℎ − 𝑖𝑖 ,   𝕄𝕄 0) = 
𝜒𝜒 (ℎ,  𝕄𝕄 𝑖𝑖 ) = 0, 𝜒𝜒 (𝑞𝑞 2,  𝕄𝕄 0) = 𝜒𝜒 (2(𝑗𝑗  − ℎ),  𝕄𝕄 0) = 𝜒𝜒 (ℎ 
− 𝑗𝑗 ,   𝕄𝕄 0) = 𝜒𝜒 �ℎ,    𝑗𝑗 � = 0.
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It is easy to see that 

�∀𝑚𝑚 ∈ (𝕄𝕄∘ ∪ {2})�(  𝑞𝑞1 ≢ 0(𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚)  ),

�∀𝑚𝑚 ∈ (𝕄𝕄∘ ∪ {2})�(  𝑞𝑞2 ≢ 0(𝑚𝑚𝑚𝑚𝑚𝑚  𝑚𝑚)  ). 

Noting that the domain of ℎ, we can deduce 

𝑞𝑞1 ∈ �𝑝𝑝1,   2⌈
𝑝𝑝n
2

8 ⌉+ 𝑝𝑝1� ,

𝑞𝑞2 ∈ [𝑝𝑝1,   𝑝𝑝𝑛𝑛2 + 𝑝𝑝1).
 

So 𝑞𝑞1 and 𝑞𝑞2 are both prime numbers. 
Now let us look at the domain of (𝑞𝑞1 + 𝑞𝑞2),

𝑞𝑞1 + 𝑞𝑞2 = 2(𝑗𝑗 − 𝑖𝑖) ∈ �2𝑝𝑝1 + 2⌈
𝑝𝑝𝑛𝑛2

8 ⌉,   2𝑝𝑝1 + 2⌊
𝑝𝑝𝑛𝑛2

2 ⌋�. 

This implies that 

for every 𝑝𝑝𝑠𝑠 > 2096, there must be primes 𝑝𝑝𝑎𝑎 and 𝑝𝑝𝑏𝑏 between 𝑝𝑝1 
and 𝑝𝑝𝑠𝑠2 + 𝑝𝑝1,

�∀𝑑𝑑 ∈ �𝑝𝑝1 + ⌈
𝑝𝑝𝑠𝑠2

8 ⌉,   𝑝𝑝1 + ⌊
𝑝𝑝𝑠𝑠2

2 ⌋�
� ( 𝑝𝑝𝑎𝑎 + 𝑝𝑝𝑏𝑏 = 2𝑑𝑑 ).

i.e.

  (∀𝑝𝑝𝑠𝑠 > 2096)�(∃𝑝𝑝𝑎𝑎,𝑝𝑝𝑏𝑏 ∈ [𝑝𝑝1,𝑝𝑝𝑠𝑠2 + 𝑝𝑝1])��∀𝑑𝑑 ∈ �𝑝𝑝1 + ⌈
𝑝𝑝𝑠𝑠2

8 ⌉,  

𝑝𝑝1 + ⌈𝑝𝑝𝑠𝑠
2

2
⌉�� ( 𝑝𝑝𝑎𝑎 + 𝑝𝑝𝑏𝑏 = 2𝑑𝑑 )��  (5.5) 

By Bertrand-Chebyshev theorem, we have 

𝑝𝑝𝑠𝑠+1 < 2𝑝𝑝𝑠𝑠, 

then 

𝑝𝑝𝑠𝑠+12

8 <
𝑝𝑝𝑠𝑠2

2 , 

so 

(∀𝑠𝑠 > 1)��𝑝𝑝1 + ⌈
𝑝𝑝𝑠𝑠2

8
⌉,   𝑝𝑝1 + ⌊

𝑝𝑝𝑠𝑠2

2
⌋� ∩ �𝑝𝑝1 + ⌈

𝑝𝑝𝑠𝑠+12

8
⌉,  𝑝𝑝1 + ⌊

𝑝𝑝𝑠𝑠+12

2
⌋� ≠ 𝜙𝜙� .  

Combining this with (5.5), we can conclude that 

(∀𝑝𝑝𝑠𝑠 > 2096)�(∃𝑝𝑝𝑎𝑎,𝑝𝑝𝑏𝑏)��∀𝑑𝑑

∈ �𝑝𝑝1 + ⌈
𝑝𝑝𝑢𝑢2

8 ⌉,   𝑝𝑝1 + ⌊
𝑝𝑝𝑠𝑠2

2 ⌋�
� (  𝑝𝑝𝑎𝑎 + 𝑝𝑝𝑏𝑏

= 2𝑑𝑑  )��, 

where 𝑝𝑝𝑢𝑢  is the smallest prime number greater than 2096, that is, 
2099. 
It is easy to get 
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𝑝𝑝1 + ⌈
𝑝𝑝𝑢𝑢2

8 ⌉ = 3 + 550726 = 550729. 

i.e.

(∀𝑝𝑝𝑠𝑠 > 2096)�(∃𝑝𝑝𝑎𝑎,𝑝𝑝𝑏𝑏)��∀𝑑𝑑

∈ �550729,   𝑝𝑝1 + ⌊
𝑝𝑝𝑠𝑠2

2 ⌋�
� (  𝑝𝑝𝑎𝑎 + 𝑝𝑝𝑏𝑏

= 2𝑑𝑑  )��. 

While the results of 𝑑𝑑 ∈ [1,550729) can be obtained by computer-
aided verification.

Since there are infinite primes, we can conclude that every even 
number greater than 2 is the sum of two prime numbers. This proves 
Theorem 2. 
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