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 RESEARCH 

The generalized Bargman-Michel-Telegdi equation 
for the FERMILAB muon experiment 

Miroslav Pardy 

INTRODUCTION 

 he Fermi National Accelerator Laboratory near Chicago 
announced that muons elementary particles similar to electrons 

wobbled more than expected while whipping around a magnetized 
ring. Both measurements of the muons wobbliness, or magnetic 
moment, significantly overshoot the theoretical prediction, as 
calculated by theoretical physicists. The Fermilab researchers estimate 
that the difference has grown to a level that physicists need to claim a 
discovery.  

The discrepancy is probably caused by unknown particles giving 
muons an extra push. It is the breakdown of the 50-year-old Standard 
Model of particle physics describing the known elementary particles 
and interactions. According to Graziano Venanzoni, one of the 
leaders of the Fermilab Muon g-2 experiment and a physicist at the 
Italian National Institute for Nuclear Physics, the existence of the 
new particle is plausible. 

On the other hand Dominik Stockinger, a theorist at the Technical 
University of Dresden and the Fermilab Muon g-2 team, said that 
physicists can’t say whether exotic new particles are pushing on 
muons until they agree about the effects of the 17 Standard Model 
particles they already know about (Quanta magazine, 2021).  

The similar scepticism is involved in the statement by Andreas 
Crivellin of CERN and by Hoferichter of the University of Bern: ”it 
could be that the data, or the way it is interpreted, is misleading”.  

The crucial problem is also the calculation of the magnetic moment 
of elementary particles in QED, SM, and QCD, which was in the best 
form performed by Julian Schwinger in QED. His method was 
applied by author, in case of the Lee model of elementary particle. 
The author approach is of deep pedagogical meaning [1].  

We know that the measurement of the g-factor is based on the 
rotation of spin. However spin rotation is described by the Bargaman-
Michel-Telegdi equation whih is in this experiment ignored. At the 
same time there is the influence of the synchrotron radiation on the 
spin motion in the electromagnetic field. The equation which 
involves the bremstrahlung interaction with spin was derived by 
author [2]. The theory of the g-factor without the generalized BMT 
equation, or, so called the Bargaman-Michel-Telegdi-Pardy equation 
(BMTP) is evidently incmplete and must be revized. So, the crucial 
problem is the synchrotron radiation interaction of muon in 
FERMILAB, which evidently influences the motion of the electron in 
accelerators in CERN and in FERMILAB.  

The equation which describes the classical motion involving radiative 
reaction is so called the Lorentz-Dirac equation, which differs from 

T 
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ABSTRACT 
The influence of the bremsstrahlung on the spin motion of muon 
is expressed by the equation which is the analogue and 
generalization of the Bargmann-Michel-Telegdi equation. The new 
constant is involved in this equation. This constant can be 
immediately determined by the experimental measurement in 

FERMILAB of the spin motion of muon, or, it follows from the classical limit of 
genneralized SM electrodynamics with radiative corrections. 
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the so called Lorentz equation only by the additional term which 
describes the radiative corrections. The equation with the radiative 
term is as follows [3]: 

where uµ is the four-velocity and the radiative term was derived by 

Landau et al. in the form [3]: 

EQ 

It is possible to show that the space components of the 4-vector force 
gµ is of the form [3]: 

EQ 

EQ 

EQ 

Bargmann, Michel and Telegdi [4] derived so called BMT equation 
for motion of spin in the electromagnetic field, in the form 

EQ 

where aµ is so called axial vector describing the classical spin and 

constants α and β were determined after the comparison of the 

postulated equations with the non-relativistic quantum mechanical 

limit. The result of such comparison is the final form of so called 

BMT equations: 

EQ 

where µ is magnetic moment of electron following directly from the 
Dirac equation and µ’ is anomalous magnetic moment of electron 
which can be calculated as the radiative correction to the interaction 
of electron with electromagnetic field and follows from quantum 
electrodynamics. The BMT equation has more earlier origin. The first 
attempt to describe the spin motion in electromagnetic field using the 
special theory of relativity was performed [5]. However, the basic ideas 
on the spin motion was established by Frenkel [6, 7]. After appearing 
the Frenkel basic article, many authors published the articles 
concerning the spin motion [8, 9]. The mechanical model of spin was 
constructed, or, in the very sophisticated form by Ohanian [10, 11] 
and other authors. However, we know at present time that spin of 
electron is its physical attribute which follows only from the Dirac 
equation. Also the Schrodinger Zitterbewegung of the Dirac electron 
as a point-like particle follows from the Dirac equation. 

It was shown by Rafanelli and Pardy that the BMT equation can be 
derived from the classical limit, i.e. from the WKB solution of the 
Dirac equation with the anomalous magnetic moment [12, 1]. 
Equation (5) is also the basic equation of the non-dissipative 
spintronics. 

EQUATION OF MOTION FOR THE SPIN-VECTOR 
If we introduce the average value of the vector of spin in the rest 

system by the quantity ζ, then the 4-pseudovector aµ is of the from aµ 

= (0, ζ). The momentum four-vector of a particle is pµ = (m, 0) in the 

rest system of a particle. Then the equation 

EQ 

is valid not only in the rest system of a particle but in the arbitrary 
system as a consequence of the relativistic invariance. The following 
general formula is also valid in the arbitrary system 

EQ 

The components of the axial 4-vector aµ in the reference system 

where particle is moving with the velocity v = p/ε can be obtained by 
application of the Lorentz transformation to the rest system and they 
are as follows [4]: 

EQ 

where suffices k, ⊥ denote the components of a, ζ parallel and 
perpendicular to the direction p. The formulas for the components 
can be also rewritten in the more compact form as follows [4]: 

EQ 

The equation for the change of polarization can be obtained 
immediately from the BMT equation in the following form [4]: 

EQ 

EQ 

where we used the relativistic relations c = 1, ds =  dt√1 − 𝑣2  , 

𝜀 = 𝑚√1 − 𝑣2 and the following components of the electromagnetic 
field [3]: 

EQ 

Inserting equation a from eq. (9) into eq. (10) and using equations 

EQ 

we get after long but simple mathematical operations the following 
equation for the polarization ζ 

EQ 

EQ 

The special interest is concerned not only in the change of the 
absolute quantity of the polarization, but in the change with regard to 
the direction of motion represented by the unit vector n = v/u. We 
write the ploarization in the form: 

mc
duµ
ds

=
e

c
Fµνu

ν + gµ, (1)
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2e3

3mc3
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(3)

daµ
ds

= αFµνa
ν − βuµF νλuνaλ, (4)

daµ
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ν − 2µ′uµF

νλuνaλ, (5)
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Then using eqs. (12), (13) and (14), we get the following equation for 
the parallel component of the polarization [4]: 

SPIN MOTION EQUATION WITH THE 
BREMSSTRAHLUNG REACTION 

It is meaningful to consider the BMT equation with the radiative 
corrections to express the influence of the synchrotron radiation on 
the motion of spin. To our knowledge such equation, the generalized 
BMT equation, was not published and we here present the conjecture 
of the form of such equation. The equation of the spin motion under 
the influence of the synchrotron radiation is suggested as an analogue 
to the BMT construction [2, 13]: 

where the term fµ(axial) is generated as the ”axialization” of the force 

elaborated from the radiation term gµ. The axialization is the 
operation which was used by Bargmann, Michel and Telegdi and it 
consists in the construction of the axial vector from the four-vector 
force. We see from the right side of the BMT equation how to 
construct such axial equation. Or, the additional axial 4-vector 
constructed from the bremsstrahlung force is as following: 

EQ 17 

So, the generalized BMT equation which involves also the influence 
of synchrotron radiation on spin motion is as follows: 

The relation of this equation to the (dissipative) spintronics cannot 
be a priori excluded. Such equation will have fundamental meaning 
for the work of LHC where the synchrotron radiation influences the 
spin motion of protons in LHC. 

THE GENERAL SOLUTION OF THE SPIN PRECESSION 
EQUATION 

The equation(13) involving the 3-vector of the radiation term (17) can 
be in general written in the following form: 

1 − v2          1 − v2

It follows from the theory of the differential equations that the 
solution of the system (28) is in general of the following form: 

where αk and Ω are some constants. The time derivative of eq. (29) is 

now 

After insertion of eqs. (29) and (30) into eq. (28), we get the following 
system after some elementary modification: 

(15)

(16)

(17)

daµ
ds

= 2µFµνa
ν − 2µ′uµF

νλuνaλ + Λfµ(axial),

EQ19 

The constant Λ is new physical constant, which cannot be determined 
from the classical theory of the spin motion. This constant can be 
determined immediately from the spin motion observed 
experimentally. However, this constant follows logically from the 
classical limit of Quantum Electrodynamics (QED) involving radiative 
corrections. The solution of this problem in the framework of the 
WKB limit of the Dirac equation with radiation term was not still 
published. On the other hand, [14, 15] derived, by the different 
method, the equation of the spin motion in electromagnetic field 
where the influence of radiative reaction on the spin motion is 
involved. This equation was used later for the determination of the 
polarization of electrons in the bent crystals [16]. While the 3-vector 
components of the radiative force are involved in the equation (3) the 
zero component must be determined by the extra way. We have: 
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After some algebraic operations, we write the set of quantities P1, P2, 

P3 as follows: 

EQ 
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where the terms of eq. (20) follow from eq. (2) in the form (c = 1):
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Using eq. (17), we can write eq. (18) in the form

= 2µFµνa
ν − 2µ′uµF

νλuνaλ + Λuµ[g0a0 − g · a].
daµ
ds
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where the coefficients akl are the corresponding coefficient in eq. (13)
and bkl are the corresponding coefficient in eq. (17).

ζk(t) = αkeiΩt, (29)

dζk
dt

= αk(iΩ)eiΩt. (30)
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Equation (32) is the equation for the determination of the three 

complex frequencies Ωk = Ω1, Ω2, Ω3. To the every frequency 
corresponds the solution 

EQ36 

and it means that the solution of the system (31) is given as the linear 
combination of the particular solutions. Or, 

EQ 37 

where βkl are some coefficients which can be determined by insertion 

of (37) in eq. (31).  

However, Ω-s are the complex quantities depending on the small 
parameter Λ. So we can write: 

EQ39 

It may be easily see that for Λ = 0 we get the solution of the spin 
motion which is not influenced by the synchrotron radiation. The 
corresponding Ω(0)-s follow from eq. (32) with Λ = 0.  

We also observe that that solution (39) involves term with 

exp{ ( ) },
l

t   where Λ is small parameter. The physical meaning of 

this term is that it expresses the damping of spin precession caused by 

the bremsstrahlung. The damping is possible only if ( ) 0.
l

  

Bayer, Katkov and Fadin used the specific method for determination 
of such factor for the case of the motion of electron in 
electromagnetic magnetic field [14, 15]. Applied the Bayer-Katkov-

Fadin results for the determination of the polarization of electrons 
caused by the bent crystals [16]. The result of the Bayer-Katkov-Fadin 

method is the term exp{ ( / )},
l

t T  where δl are some appropriate

constants. They calculated T in the form 

where α ≈ 1/137 and γ is the Lorentz factor.  

We see that we can define Tl by the relations 

and for the small parameter Λ it is possible to use approximation 

In other words, we get also three damping factors as [14] by the 
different approach to the bremsstrahlung problem. The method of 
Schiller and Rafanelli based on the WKB solution of the Dirac 
equation with bremsstrahlung term was not used [14, 15]. To our 
knowledge, the Schiller and Rafanelli method was not still applied to 
the problem of the influence of the bremsstrahlung on the spin 
motion. 

DISCUSSION 
We have considered here the influence of the synchrotron radiation 
on the spin motion of a charged particle moving in the homogeneous 
magnetic field. It is well known that the synchrotron radiation also 
influences the trajectory of the charged particle. However we do not 
consider this influence. It is well known that not only the the 
synchrotron radiation is produced during the motion of a particle in 
the magnetic field but also the so called spin light, which is generated 
by spin motion of a particle. We suppose that the influence of the 
spin light on the spin motion is so small that it is possible to neglect 
such influence. 

The intensity of the synchrotron radiation is, as it is well known, 
given by the formula [17, 18]: 

EQ 43 

where R is the radius of the circular motion, ε is the energy of the 
moving particle.  

The intensity of the spin light is expressed by the formula: 

EQ 44 

After comparison of formula (28) and (29), we see that the the 
intensity of the spin light is smaller than the intensity of the 
synchrotron radiation. So, the influence of the spin light on the spin 
motion can be neglected [19-21].  

There is the second possibility how to generalize the BMT equation. 
It consists in axialization of the bremsstrahlung force in the following 
way: 
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Using eq. (38) we can write eq. (37) in the following form:
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EQ 

EQ45 

Then, such force multiplied with the appropriate constant can be add 
to the original BMT equation. We think that the second conjecture 
which is presented in this article cannot be a priori excluded.  

The verification of the bremsstrahlung equation (16) - the Bargman-
Michel-Telegdi-Pardy equation - can be evidently verified by all 
circular accelerators over the world, including LHC and FERMILAB 
muon accelerator. 
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