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 RESEARCH ARTICLE 

The parameterization of all stabilizing minimum-phase 
controllers for minimum-phase strictly proper plants 

Dayu Zhang1, Nghia Thi Mai2, Kotaro Hashikura3, Md Abdus Samad Kamal3, Kou Yamada3 

INTRODUCTION 

or the minimum-phase strictly proper controlled system, the 
parameter expressions of minimum-phase stabilizing 

controllers are given in this paper. That is, this paper proposes 
the parameterization of the minimum-phase stabilizing controllers for 
the minimum-phase system. The problem of parameterization 
is to find all stablizing controllers for a plant, so as to make the 
system stable, and to obtain plants those can be stabilized [1–11]. 
This method can effectively solve all the parameterization of 
the minimum-phase stabilizing controllers for minimum-phase 
system, so it has been applied in many practical problems. 

Compared with the non-minimum phase system, the minimum-phase 
system has fast response, small energy delay, stable inverse system and 
other advantages [12-13]. Comparing with the nonminimum-
phase system constructed by configuring the right half-plane zero 
point or adding the time-delay, it is obtained that the minimum-
phase system has the shortest response time [13]. 

At any time, the cumulative output energy of the minimum phase 
system is not less than that of the non-minimum phase system. It can 
be proved that the cumulative output energy of the minimum phase 
system is closer to time 0 and has the shortest energy delay [12]. And 
the inverse system of the minimum-phase system is stable, because the 
stable poles of the inverse system of the minimum phase system is the 
zeros of the original system which has no unstable zero. Benefiting 
from these advantages, the minimum-phase system is widely used in 
signal processing and other related fields, such as state system, design of 
causal stable digital filter, neural network and calculation and 
processing of cepstrum and inverse filtering [12-16]. 

Glaria and Goodwin provided a simple parameterization for the 
stability control of the minimum-phase [4]. However, there are 
two difficult problems. One of them is that the 
parameterization of stabilizing controllers proposed by Glaria 
and Goodwin usually contain improper controllers. In the specific 
process of use, a proper controller is needed. Second, the internally 
stability in the system is not parameterized. In order to solve the above 
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ABSTRACT 
The problem of parameterization is to find all stabilizing 
controllers for the controlled system. At present, there are many 
methods to choose from for the controlled plants with the 
minimum-phase. However, most of the existing procedure do not 
introduce minimum-phase controller into the system. In this 
sense,Zhang et al. have a new view that a parameterization 
method for all minimum-phase controllers for minimum-phase 
biproper systems is given. This paper expands the research results 
of Zhang et al. for the minimum-phase strictly proper controlled 

systems and the parameterization of all minimum-phase stabilizing controllers is 
given. The internal stability and control performance of the closed-loop system 
are studied. At the same time, an algorithm which can be used to 
construct minimum-phase stability control is presented. Finally, an example 
is given to explain the characteristics of the algorithm proposed in this paper. 
Because this method can find all the minimum-phase stabilizing controllers 
well, it can be applied to many control problems. 

Keywords:  Minimum-Phase System; Minimum-Phase Controllers; Strictly Proper Plants; 
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problems, Yamada presents a parameterization for the class of 
all proper stabilizing controllers for linear minimum phase 
systems [5]. Parametric processing is carried out by using all the 
stabilizing controllers, such as all stabilization modification of 
the minimum-phase object, repetitive control, adaptive control, 
model feedback control, parallel compensation technology, PI 
control and PID control [5, 17-23]. For multiple-input/
multiple-output systems, a parameterized scheme of all stability 
control is given, and the research results of these schemes can 
be extended to multiple-input/multiple-output [17–24]. 

However, for the minimum-phase plants, there is still a 
problem whether its stability control can be used by the 
minimum-phase controller. If the stabilizing controller with non-
minimum-phase is used, its unstable zeros will cause the transfer 
function of the closed-loop system to have zeros on its right half 
plane. This makes the closed-loop control system very sensitive to 
the disturbance of the external environment, thus affecting the 
control effect. In addition, if the feedback loop is truncated, that is, 
it is split into a feedforward, then the instability caused by it will 
lead to instability [7,8]. In this way, even though the controlled 
plant is of minimum-phase, the control system becomes an non-
minimum system. If the minimum-phase control is adopted, the 
target of the minimum-phase will remain unchanged, and the 
magnitude of sensitivity of the whole system will become small. The 
lower the sensitivity curve, the greater the damping to external 
interference. If the minimum-phase controllers of the minimum-
phase plants can be parameterized, a new control strategy for the 
minimum-phase system can be obtained. Therefore, for the strictly 
proper controlled plants with minimum-phase, the 
minimum-phase controllers must be parameterized. 

In this paper, we propose the parameterization of all stabilizing 
minimum-phase controllers for minimum-phase strictly proper plants. 
That is, we consider the parameterization that the stabilizing 
controller makes minimum-phase plant stable, which the stabilizing 
controller is of minimum-phase. Analysis of the internal stability and 
control characteristics of closed-loop system are provided. We also 
present a design method of the minimum-phase stabilizing controllers 
that contributes to the construction of a minimum-phase closed-loop 
system. In addition, we show a numerical example to illustrate the 
characteristics of the proposed design approach. 

PROBLEM DESCRIPTION 
In this section, we introduce the problem considered in this paper. 
We consider a closed loop feedback control system as, 

( ) ( ) ( ) ( )
.

( ) ( ) ( ( ) ( ))
y s G s u s d s
u s C s r s y s

  


 
 (1) 

Here, ( ) ( ), ( ) ( ), ( ) ( ) ( )y s R s u s R s r s R s and R s   are the output, 

control input, reference input and disburtance of the control system 
respectively. ( ) ( ) ( ) ( )G s R s and C s R s  are the controller and the 

plant of the control system separately, and both of them are of 
minimum-phase, that means, all zeros of them are in the left half 
plane. In this paper, the controlled plant G(s) with minimum-phase is 
required to be strictly proper and it is possible to be stable or 
unstable. By using the parameterization of the minimum-phase 

stabilizing controller for the minimum-phase plant, the controller 
C(s) is required to be derived. In the specific process of use, a proper 
controller is needed and the internally stability and the robustness of 
the control system need to be considered. Here R(s) indicates the set 
of real rational functions for the set with s. 

Before seeking the parametrization for the strictly proper plants, the 
preliminary result proposed by Zhang et al. is summarized [25]. 
For the minimum-phase biproper plants, the parameterization 
of all minimum-phase stabilizing controllers are given as follows. 

Lemma 1 
G(s) is assumed to be of minimum-phase and to be biproper [25]. 
Then the minimum-phase controller C(s) stabilizes the feedback 
control system in (1) if and only if C(s) is written by the form of 

( )
( )

(1 ( )) ( ) '

Q s
C s

Q s G s



   (2) 

where ( )Q s R H


 is any minimum-phase function to make

(1 ( )) ( ) .Q s G s RH RH
 

  denotes the set of stable rational function 

with s [25]. 

The problem considered in this paper is to clarify the 
parameterization of all stabilizing minimum-phase controllers C(s) for 
minimum-phase strictly proper plants G(s). 

THE PARAMETERIZATION OF ALL STABILIZING 
MINIMUM-PHASE CONTROLLERS FOR MINIMUM-PHASE 

STRICTLY PROPER PLANTS 

In this section, we clarify the parameterization of all stabilizing 
minimum-phase controllers C(s) for minimum-phase strictly proper 
plants G(s). 

This parameterization is summarized in the following theorem. 

Theorem 1 
Assume that G(s) is strictly proper and of minimum-phase. When 
K(s) exists in a system of equations, K(s) is a stable and biproper real 
rational function and make G(s) + K(s) be a biproper and minimum-
phase real rational function. Utilizing the above K(s), for all proper 
minimum-phase stabilizing controllers C(s) of the plant G(s) with 
strictly proper and minimum-phase, the parameters are as follows 

( )
( ) .

1 ( ) ( )

C s
C s

C s K s



 (3) 

Here, ( )C s  is expressed as 

( )
( )

1 ( ) ( ( ) ( ))

C s
C s

Q s G s K s


 
(4) 

and ( )Q s is the minimum-phase function belong to RH


and to

make (1 ( )) ( ) ( )) .Q s G s K s RH


    

For proving the Theorem 1, the following 

Theorem 2 
Assume that G(s) is strictly proper and minimum-phase. When K(s) 
exists in a system of equations, K(s) is a stable and biproper real 
rational function and make G(s) + K(s) be a biproper and minimum-

theorems are needed.
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phase real rational function. 
Proof 

At first, G(s) is factorized into the coprime factors with ( )N s R H




and ( )D s RH


 R H


on and G(s) is rewritten in the form of

( )
( ) .

( )

N s
G s

D s
  (5) 

Here, because G(s) is assumed to be of minimum-phase and strictly 

proper, ( )N s RH


 is of minimum-phase and strictly proper. In 

addition, G(s) + K(s) is donated as 
( ) ( ) ( )

( ) ( ) ,
( )

N s K s D s
G s K s

D s


   (6) 

Then, the exist condition of K(s) is that G(s) + K(s) is a biproper and 
minimum-phase, and consistent with that of ( )U s u  and 

( )K s RH


 satisfying

( ) ( ) ( ) ( ) .U s N s K s D s u    (7) 

Here, u  is the set of unimodular functions on ,R H


 so ( )U s u

implies ( )U s RH


 and
1

( ) .U s RH



 The existence conditions of

U(s) and K(s) is equivalent to the interpolation problem and are 
written as 

( ) ( ) ( 0, ... 1; 1, ... ),

j j

j ji i i

d d
U s N s j m i l

ds ds
    (8) 

where 
1

, ...,
l

s s are different zeros of D(s) on the positive real axis, 

1
, ...,

l
m m are the corresponding multiplicities and l denotes the 

number of different zeros of D(s) on the positive real axis. Since G(s) 
is of minimum-phase, N(s) is also of minimum-phase. This implies 

that all of ( )
i

N s are the same sign. From Theorem 2.3.1, there exists 

( )U s u and ( )K s RH


 satisfying (8) [7]. This implies that there

exists ( )U s u and ( )K s RH


 satisfying (7).

The remaining problem is whether or not, K(s) is biproper. Next, it is 
shown that if ( )U s u  exists such that (7) holds true, then K(s) is 

biproper. From (7), K(s) is written by 
( ) ( )

( ) .
( )

U s N s
K s

D s


  (9) 

The assumption that U(s) holds (7) implies that K(s) written by (9) is 
stable. Since both U(s) and D(s) are biproper and N(s) is strictly 
proper, K(s) denoted by (9) is biproper. 
We have thus proved the theorem. 

Theorem 3 
Assume that ( ) ( ) ( )G s G s K s  is the real rational function with 

strictly proper and minimum-phase. All minimum-phase stabilizing 
controllers ( )C s , its parameterization for the plant ( )G s is denoted as 

( )
( ) .

(1 ( )) ( )

Q s
C s

Q s G s



 (10) 

Here, ( )Q s RH


 is any minimum-phase function and to make

(1 ( )) ( ) .Q s G s RH


 

Proof 
Because ( ) ( ) ( )G s G s K s   is assumed to be the real rational function 

with strictly proper and minimum-phase, according to Lemma 1, the 
minimum-phase stabilizing controllers ( ),C s its parameterization for 

( )G s  is denoted as (10). 

We have thus proved the theorem. 

Theorem 4 

Assume that ( )K s RH


 is biproper and G(s) is strictly proper. If the 

minimum-phase controller C(s) stabilizes the plant G(s), then ( )C s  is 

written as 
( )

( )
1 ( ) ( )

C s
C s

C s K s



 (11) 

stabilizes the plant ( ) ( ) ( ).G s G s K s   Furthermore, the opposite is 

also true. That is, if the minimum-phase controller ( )C s  stabilizes the 

plant ( ) ( ) ( ),G s G s K S   then the the minimum-phase controller 

C(s) is written as 

( )
( )

1 ( ) ( )

C s
C s

C s K s



 (12) 

stabilizes the plant G(s). 

Proof 
First, we will prove that if the minimum-phase controller C(s) 
stabilizes G(s), then the minimum-phase controller ( )C s written by 

(11) stabilizes ( ) ( ) ( ). ( )G s G s K s K s  is assumed to be biproper and

C(s) is assumed to be of minimum-phase. In (11) if the
1

(1 ( ) ( ))C s K s


 has unstable zeros, the unstable zeros are the unstable

poles of C(s). Therefore, the ( )C s has no unstable zeros, that is, ( )C s

is of minimum-phase. Then from (11) and simple manipulation, 
1 / (1 ( ) ( )),C s G s ( ) / (1 ( ) ( )), ( ) / (1 ( ) ( ))C s C s G s G s C s G s  and 

( ) ( ) / (1 ( ) ( ))C s G s C s G s are rewritten as 

1 1 ( ) ( )
,

1 ( ) ( ) 1 ( ) ( )

C s K s

C s G s G s C s




 

(13) 

( ) ( )
,

1 ( ) ( ) 1 ( ) ( )

C s C s

C s G s G s C s


 
(14) 

( ) ( ( ) ( )) (1 ( ) ( ))
,

1 ( ) ( ) 1 ( ) ( )

G s G s K s C s K s

C s G s G s C s

 


 
(15) 

and 

( ) ( ) ( ( ) ( )) ( )
.

1 ( ) ( ) 1 ( ) ( )

C s G s G s K s C s

C s G s G s C s




 

( ), 1 / (1 ( ) ( )),G s C s G s

( ) / (1 ( ) ( )),C s C s G s ( )/ (1 ( ) ( )),G s C s G s

 From the assumption that C(s) stabilizes 

and ( ) ( ) / (1 ( ) ( ))C s G s C s G s

are all include in .R H


 Therefore, all of transfer functions in (13), 

(14), (15) and (16) are include in .R H


 

Next, we will show that if the minimum-phase controller ( )C s

stabilizes the plant ( ) ( ) ( ),G s G s K s  then the minimum-phase 

controller C(s) written by (12) stabilizes G(s). In (12) if the 

(16) 
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1
(1 ( ) ( ))C s K s


 has unstable zeros, the unstable zeros are the unstable

poles of C(s). Therefore, the C(s) has no unstable zeros, that is, C(s) is 
of minimum-phase. Then from (12) and simple manipulation, 

1 / (1 ( ) ( )),C s G s ( ) / (1 ( ) ( )),C s C s G s ( ) / (1 ( ) ( ))G s C s G s and 

( ) ( ) / (1 ( ) ( ))C s G s C s G s are rewritten as 

1 1 ( ) ( )
,

1 ( ) ( ) 1 ( ) ( )

C s K s

C s G s G s C s




 
 (17) 

( ) ( )
,

1 ( ) ( ) 1 ( ) ( )

C s C s

C s G s G s C s


 
   (18) 

( ) ( ( ) ( ))(1 ( ) ( ))
,

1 ( ) ( ) 1 ( ) ( )

C s G s K s C s K s

C s G s G s C s

 


 
 (19) 

and 

( ) ( ) ( ( ) ( )) ( )
.

1 ( ) ( ) 1 ( ) ( )

C s G s G s K s C s

C s G s G s C s




 
 (20) 

From the assumption that ( )C s stabilizes ( ) ( ) ( ),G s G s K s 

1 / (1 ( ) ( )),C s G s ( ) / (1 ( ) ( )),C s C s G s ( ) / (1 ( ) ( ))G s C s G s and 

( ) ( ) / (1 ( ) ( ))C s G s C s G s are all include in .R H


Therefore, all of 

transfer functions in (17), (18), (19) and (20) are include in .R H


We have thus proved Theorem 4. 
Theorem 1 is proved using the above-described theorems. 

Proof 

From Theorem 2, there exists biproper to make 

( ) ( ) ( )G s G s K s  of minimum phase. From Theorem 4, the 

parametrization of all internally stabilizing controllers C(s) for G(s) is 
same to that of all internally stabilizing controllers ( )C s for 

( ) ( ) ( ).G s G s K s  The parametrization of all internally stabilizing 

controllers ( ) ( ) ( )G s G s K s   is given by (10), where ( )Q s RH


 is

any minimum-phase function to make (1 ( )) ( ) .Q s G s RH


  The

equation (10) corresponds to (4). From Theorem 4, using ( )C s , C(s) 

is written in terms of (12). The equation (12) corresponds to (3). The
proof of Theorem 1 is complete. 

PROPERTIES OF THE CONTROL SYSTEM 
We elucidate the properties of the closed-loop control system using 
the parameterization of all the stabilizing minimum-phase controllers 
given by (3) in this section. 

First, we consider the reference tracking property. Here, using the 
parameterization of all minimum-phase stabilizing controllers for the 
minimum-phase plants in (3), the transfer function in (1) from the 
reference input ( )r s to the output ( )y s of the control system is given 

as 

( ) ( ) ( )
.

( ) ( ) ( )

y s Q s G s

r s G s K s



                                           

( )y sTherefore, in order to make the output follow the step reference 

input without steady-state error, 

(0) (0)
1

(0) (0)

Q G

G K



(22) 

must be achieved. Thus, the output ( )y s follows the step reference 

input without steady-state error, if ( )Q s satisfies the 

following condition 
(0)

(0) 1 .
(0)

K
Q

G
   (23) 

Next, the decay properties of the disturbance are described. The 
transfer function from the disturbance d(s) to the output ( )y s is 

given as 

( ) ( ) ( )
1 .

( ) ( ) ( )

y s Q s G s

d s G s K s
 


 (24) 

Therefore, in order to fully decay the step disturbance ( ) 1 / ,d s s

(0) (0)
1

(0) (0)

Q G

G K



 (25) 

must be achieved. Thus, the step disturbance of ( ) 1 / ,d s s will 

effectively be rejected if ( )Q s satisfies the following condition 

(0)
(0) 1 .

(0)

K
Q

G
 

DESIGN METHOD OF MINIMUM-PHASE STABILIZING 
CONTROLLERS 

G

1. Obtain K(s) that satisfies Theorem 2, and such that G(s) +
K(s) is of minimum-phase and biproper.

2. Obtain ( ) ( ) ( )G s G s K s  that is of minimum-phase and

biproper function.

3. Define a function ˆ ( )Q s as

( )
ˆ ( ) .

( )

K s
Q s

G s
   (27) 

4. Using ˆ ( )Q s in (27), design ( )Q s RH


 as

ˆ( ) 1 ( ) ,
( 1)

k
Q s Q s

s 
 


 (28) 

where τ ∈ R, α is an arbitrary positive integer to make  proper 

and k is a constant. 
5. Using in (28), fix a minimum-phase stabilizing

controller C(s) in (3).

NUMERICAL EXAMPLE 
This section shows a numerical example to illustrate the features of 
the  proposed design method. 
Consider the problem to find a minimum-phase stabilizing 
controllers for the plant G(s) written by 

K  s( ) ∈ RH ∞

(21) 

(26)

( ) ) ( )G s G s K s(= +

Next, we present a design method of the stabilizing minimum-
phase controllers for the minimum-phase strictly proper plants. 
From Theorem 1, to design a minimum-phase stabilizing 
controller C(s), we need to obtain K(s) satisfying Theorem 2 and 
such that  is of minimum-phase and biproper. 

Then, Q RH


s( )   is determined as a function of any minimum-

(1phase such that ( ))( ( ) ( )) .Q s G s K s RH


− +  Furthermore, in 

( ) 1 /

order to make the output y(s) follow the reference input 
without steady-state error, needs to satisfy (23). A r s s= Q s( )

design method for Q RH


s( ) and the minimum-phase 

stabilizing controller C(s) is concluded as follows. 

r(s) =1 / s

Q s( )

Q s( )
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( 3)
( ) .

( 1)( 2)

s
G s

s s




   (29) 
By Theorem 2, we obtain 

2

( 1.657)( 3.529) ( 5.814)
( ) .

( 2) ( 9)

s s s
K s

s s

  


 
 (30) 

GThen, is written as 
2

2

( 5)( 4) ( 1)
( ) ( ) ( ) .

( 1)( 2) ( 9)

s s s
G s G s K s

s s s

  
  

  

From (27), ˆ ( )Q s is written by 

( 1.657)( 3.529) ( 5.814)( 1)
ˆ ( ) .

( 9)( 3)( 2)

s s s s
Q s

s s s

   
 

  

( )Q s is given by (28), where k, α, and τ are settled by 

1,k   (33) 

1  (34) 

1,   (35) 

Then ( )Q s is obtained as 

2 ( 7.242) ( 3.272) ( 1.744) ( 0.242)
( ) .

( 9)( 3)( 2)( 1)

s s s s
Q s

s s s s

   


   
 (36) 

Figure 1) The response of the output of y(t) of the controlled system 
corresponding to the step reference input r(t) = 1 

Then the minimum-phase stabilizing controller C(s) is obtained as 

2 ( 7.242) ( 3.272) ( 2)( 1.744) ( 0.242)
( ) .

( 5.814)( 3.529)( 3)( 1.657)

s s s s s
C s

s s s s s

    


   
        (37) 

For the step reference input r(t) = 1, the output of the closed-loop 
system y(t) reacts as follows 1 when using the minimum-phase 
stabilizing controller C(s) (37). In the curve of Figure 1, it is 
proved that the controlled system is stable under the equation (1), 
and its output y(t) is equal to the step reference input r(t) = 1, and 
there is no steady-state deviation. 

On the contrary, if there is a step disturbance, the output 
response of the closed-loop is displayed in the Figure 2. The curve 
in Figure 2 confirms which the effect of this interference on d(t) = 
1 is effective. 

Next, to verify the robustness of the proposed method, we 
consider this case where we control a perturbed controlled plant 

with the controller that has been derived. The controlled plant is 
denoted as 

1

( 10)
( ) .

( 1) ( 2)

s
G s

s s




 
          (38) 

In this case, the output response corresponding to the step input 
r(t) = 1 is represented in Figure 3. The figure reflects that output 
y(t) follows the step reference input r(t) well with no steady state 
error. And the output response corresponding to the step 
disturbance d(t) = 1 is represented in Figure 4. The figure reflects 
the ability to effectively stop external disturbance. 

Figure 2) The response of the output of y(t) of the controlled system 
corresponding to the step disturbance d(t)  

Figure 3) The response of the output of y(t) of the controlled system with G1 
corresponding to the step reference input r(t) = 1 

Figure 4) The response of the output of y(t) of the controlled system with G1 
corresponding to the step disturbance d(t) =1 

 (31) 

 (32) 
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CONCLUSION 

In this paper, we clarified the parameterization of all stabilizing 
minimum-phase controllers for minimum-phase strictly proper 
plants. That is, we showed that if the stabilizing controller C(s) is 
written by the form of (3), the minimum-phase plant is stabilized. 
In addition, we showed a numerical example to illustrate that a 
stabilizing minimum-phase controller written by the form of (3) 
can stabilize the minimum-phase plant. In the future, we will 
present the parameterization of all stabilizing minimum-phase 
controllers for minimum-phase mutiple-input/mutiple-output 
plants. 

REFERENCES 

1. Youla DC, Jabr HA, Bongiorno JJ. Modern Wiener-Hopf

design of optimal controllers. Part I: The single-input-

output case. IEEE Trans Autom Control. 1976;21(1):3-

13. 

2. Desoer CA, Liu RW, Murray J, et al.  Feedback system

design-The fractional representation approach to analysis

and synthesis. IEEE Trans Autom Control.

1980;25(3):399-412.

3. Zhou K, Doyle JC, Glover K. Robust and optimal

control. Prentice-Hall. 1980.

4. Glaria JJ, Goodwin GC. A parametrization for the class

of all stabilizing controllers for linear minimum phase

systems. IEEE Trans Autom Control. 1994;39(2):433-

34.

5. Yamada K. A parameterization for the class of all proper

stabilizing controllers for linear minimum phase systems.

IFAC Proc Vol. 2001;578-83.

6. Zames G. Feedback and optimal sensitivity:  model

reference transformations, multiplicative seminorms and

approximate inverses. IEEE Trans Autom Control.

1981;26(2):301-20. 

7. Vidyasagar M. Control System Synthesis: A Factorization

Approach. Morgan Claypool. 2011.

8. Akuzawa T, Zhang D, Hoshikawa T. et al. A Design

Method for Strongly Stabilizing Controllers. Int J Innov

Comput Inf Control. 2020;16(6):2131-41. 

9. Zhang D, Hashikura K, Suzuki T, et al. The characteristic

of all strongly stabilizable MIMO plants. ICIC Express

Lett. 2019;13:601-07. 

10. Hagiwara T, Yamada K, Sakanushi T, et al. The

parameterization of all plants stabilized by Proportional 

controller. 25th Int Tech Conf Circuit/Syst Comput

Commun CD-ROM. 2010;76-8. 

11. Hoshikawa T, Li J, Tatsumi Y, et al. The class of strongly

stabilizable plants. ICIC Express Lett. 2017;11:1593-98.

12. Kulkarni A, Isabelle SK, Colburn HS. On the minimum-

phase approximation of head-related transfer functions.

Proc 1995 Workshop Appl Signal Process Audio

Accoustics. 1995;84–7.

13. Franklin GF, Powell JD, Emami NA. Feedback control of

dynamic systems. Prentice hall. 2002.

14. Dam HH, Nordebo S, Svensson L. Design of minimum-

phase digital filters as the sum of two allpass functions

using the cepstrum technique. IEEE Trans Signal Process. 

2003;51(3):726–31.

15. Blaauw M. Modeling timbre for neural singing synthesis: 

methods for data-efficient, reduced effort voice creation, 

and fast and stable inference.  Univ Pompeu Fabra. 2022.

16. Smith JO. Spectral Audio Signal Processing. 2011.

17. Okuyama T, Yamada K. A parameterization for the class of

all stabilizing repetitive learning controllers for linear

minimum phase systems. Proc IEEE conf Syst Man

Cybern. 1999;5:62-67. 

18. Yamada K. Control structure of stabilizing controller for

the minimum phase systems and design method of

adaptive control systems. IFAC Proc Vol. 2001;597-602.

19. Yamada K, Satoh K, Matsushima N. A design method of

adaptive control systems using the parametrization of all

stabilizing controllers for minimum phase systems. Intell

Eng Syst Through Artif Neural Netw. 2004;14:379-384.

20. Yamada K, Moki T. Relation between Model Feedback

Control Systems and parameterization of all stabilizing

controller. IFAC Proc Vol. 2002.

21. Yamada K, Moki T. A study on control design methdo

using parallel compensation technique. Trans Jpn Soc 

Mech Eng. 2003;69(687):3015-20. 

22. Yamada K. A design method for PI control for minimum

phase systems. Intell Eng Syst Through Artif Neural Netw.

2003;13:571-76.

23. Yamada K. Modified PID controllers for minimum phase

systems and their practical application. Proc 2005 Electr

Eng/Electron Comput Telecommun Inf Technol (ECTI)

Int Conf Vol. II of II. 2005;457-460. 

24. Yamada K, Satoh K, Mei Y, et al. The parametrization for

the class of all proper internally stabilizing controllers for

multiple-input/multiple-output minimum phase systems.

ICIC Express Lett. 2009;3(1):67-72.

https://ieeexplore.ieee.org/abstract/document/1101139
https://ieeexplore.ieee.org/abstract/document/1101139
https://ieeexplore.ieee.org/abstract/document/1101139
https://ieeexplore.ieee.org/abstract/document/1102374/
https://ieeexplore.ieee.org/abstract/document/1102374/
https://ieeexplore.ieee.org/abstract/document/1102374/
http://www.mnrlab.com/uploads/7/3/8/3/73833313/lqr.pdf
http://www.mnrlab.com/uploads/7/3/8/3/73833313/lqr.pdf
https://ieeexplore.ieee.org/abstract/document/272352
https://ieeexplore.ieee.org/abstract/document/272352
https://ieeexplore.ieee.org/abstract/document/272352
https://www.sciencedirect.com/science/article/pii/S1474667017408755
https://www.sciencedirect.com/science/article/pii/S1474667017408755
https://ieeexplore.ieee.org/abstract/document/1102603
https://ieeexplore.ieee.org/abstract/document/1102603
https://ieeexplore.ieee.org/abstract/document/1102603
https://epubs.siam.org/doi/abs/10.1137/1029137?journalCode=siread
https://epubs.siam.org/doi/abs/10.1137/1029137?journalCode=siread
http://www.ijicic.org/ijicic-160621.pdf
http://www.ijicic.org/ijicic-160621.pdf
https://web.archive.org/web/20220224173745id_/http:/www.icicel.org/ell/contents/2019/7/el-13-07-08.pdf
https://web.archive.org/web/20220224173745id_/http:/www.icicel.org/ell/contents/2019/7/el-13-07-08.pdf
https://www.scientific.net/KEM.534.173
https://www.scientific.net/KEM.534.173
https://www.scientific.net/KEM.534.173
http://www.icicel.org/ell/contents/2017/11/el-11-11-02.pdf
http://www.icicel.org/ell/contents/2017/11/el-11-11-02.pdf
https://ieeexplore.ieee.org/abstract/document/482964/
https://ieeexplore.ieee.org/abstract/document/482964/
https://www.scsolutions.com/wp-content/uploads/TableofContents_FPE8e.pdf
https://www.scsolutions.com/wp-content/uploads/TableofContents_FPE8e.pdf
https://ieeexplore.ieee.org/abstract/document/1179768
https://ieeexplore.ieee.org/abstract/document/1179768
https://ieeexplore.ieee.org/abstract/document/1179768
https://www.tdx.cat/handle/10803/675120
https://www.tdx.cat/handle/10803/675120
https://www.tdx.cat/handle/10803/675120
https://ccrma.stanford.edu/~jos/sasp/
https://ieeexplore.ieee.org/abstract/document/815521
https://ieeexplore.ieee.org/abstract/document/815521
https://ieeexplore.ieee.org/abstract/document/815521
https://www.sciencedirect.com/science/article/pii/S1474667017408779
https://www.sciencedirect.com/science/article/pii/S1474667017408779
https://www.sciencedirect.com/science/article/pii/S1474667017408779
https://www.sciencedirect.com/science/article/pii/S1474667017408779
https://www.sciencedirect.com/science/article/pii/S1474667017408779
https://www.sciencedirect.com/science/article/pii/S1474667017408779
https://www.sciencedirect.com/science/article/pii/S1474667015386328
https://www.sciencedirect.com/science/article/pii/S1474667015386328
https://www.sciencedirect.com/science/article/pii/S1474667015386328
https://ieeexplore.ieee.org/abstract/document/5947894/
https://ieeexplore.ieee.org/abstract/document/5947894/
https://cir.nii.ac.jp/crid/1572824500221689728
https://cir.nii.ac.jp/crid/1572824500221689728
https://cir.nii.ac.jp/crid/1570009750454588032
https://cir.nii.ac.jp/crid/1570009750454588032
http://www2.kuma.u-tokai.ac.jp/~shi/el08-064.pdf
http://www2.kuma.u-tokai.ac.jp/~shi/el08-064.pdf
http://www2.kuma.u-tokai.ac.jp/~shi/el08-064.pdf


The parameterization of all stabilizing

J Pure Appl Math Vol 7 No 3 May 2023 199

25. Zhang D, Hashikura K, Kamal MAS, et al. The

parameterization of all stabilizing minimum-phase

controllers for minimum-phase plants. ICIC Express Lett.

2020;14(10):979-84.

https://cir.nii.ac.jp/crid/1390009224556716672
https://cir.nii.ac.jp/crid/1390009224556716672
https://cir.nii.ac.jp/crid/1390009224556716672



