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ABSTRACT

The SARS-CoV-2 was appeared in mid-2020 but the first RNA sequence 
was available since December, 2020. The higher transmission and disease 
severity were seen since acquisition of D614G dominant point mutation 
in spike protein as well as P4715L point mutation in the RNA-dependent 
RNA polymerase (RdRp).  The next event occurred in B.1.1.7 Alpha variant 
was acquisition of N501Y point mutation and 69HV two AAs deletion 
in the spike protein. Interestingly, 3675SGF three AAs deletions 
were also occurred in ORF1ab polyprotein in B.1.1.7 variants. The 
appearance of notorious Delta variant in Mid-2021 was shocking as too 
many deaths happened worldwide. The Delta variants (B.1.617.2 and 
AY.X) acquired 

157FR two AAs deletion instead 69HV in B.1.1.7 variant. Here, we showed 
that Delta variant was spread worldwide but has no 3675SGF deletion. 
Moreover, 3675SGF deletion was found in all Omicron variants which were 
appeared in December, 2021 and its subvariants BA.2.75, BA.5.2.1.7 (BF.7), 
BQ.1, BQ.1.1 and XBB.1.5 which were spreading now worldwide with 
mild infections. Thus, Delta variant has very complete ORF1ab protein 
(9096 AAs) to attend high titre and to infect more human lung cells. 
Further, 119DF deletion in ORF8 activator protein and 157FR 
deletion in spike might be contributed to higher pathogenicity in Delta 
including P2046L and P2287S mutations in nsp3 main protease, P4715L 
and G5063S mutations in RdRp and P6128S and A6319V mutations in 
nsp14 Ribonuclease. Further, complete attenuation of Delta corona virus 
spread recently likely due to herd immunity and wide spread inoculation 
with COVID-19 vaccine.
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INTRODUCTION 

The COVID-19 virus is a 
~
30kb single-stranded positive-sense large RNA 

virus which infects human lung cells to cause corona disease since 
2020 [1]. COVID-19 is related to six different coronaviruses like CoV- 
229E, CoV-HKU1, CoV-OC43, CoV-NL63, SARS-CoV, and Middle East 
Respiratory Syndrome Coronavirus (MERS-CoV) which were known since 
2003-2012 [2,3]. Within two years the coronavirus acquired many mutations 
and deletions with the difference in its pathogenicity and severity to cause 
death [4-8]. Five VOCs of SARS-CoV-2 mainly caused millions of death 
worldwide and named B.1.1.7 (Alpha; U.K.), B.1.351 (Beta; South Africa), 
P.1 (Gamma; Brazil), B.1.617.2 (Delta; India), and B.1.1.529 (Omicron; USA, 
Africa). Analysis suggested that spike protein (1273AA) of COVID-19 had 
gone through extensive mutations and deletions than large polyprotein 
ORF1ab (7096aa) which was degraded into sixteen polypeptides like RNA 
topoisomerase (nsp2), proteases (nsp3 and nsp5), RNA-dependent RNA 
polymerase (nsp12), RNA helicase-capping methyltransferase (nsp13), 
RNases (nsp14 and nsp15) and 2’-uridine methyltransferase (nsp16) [9-13]. 
The different peaks of VOCs appeared at different times and stayed for 
some time but a new wave appeared due to the antigenic shift of COVID-19 
usually due to spike protein mutations [14,15]. Here, we showed that more 
severe form of COVID-19, Delta coronaviruses have no deletion mutation in 
the ORF1ab polyprotein (9096 AAs).

MATERIALS AND METHODS

We searched PubMed to get an idea of published papers on ORF1ab 
and also searched the SARS-CoV-2 NCBI database using BLAST-N and 
BLAST-X search methods to get sequences. Multi-alignment of protein was 
done by MultAlin software and multi-alignment of DNA by 
CLUSTAL-Omega software, EMBL-EBI [15-20]. The ORF1ab mutants were 
obtained by BlastN search of deletion boundary of 60-100nt sequence and 
then analyzing the sequences with 95%-100% similarities [21]. The other 
ORF1ab mutants were detected by Blast-N search and Blast-X- search with

selected deletion boundaries. The hairpin structure of
~
120-200nt 

sequence was done by Oligo Analyzer 3.1 software (Integrated DNA 
Technologies). The protein 3-D structure was determined by SWISS-Model 
software with normal vs. mutant peptides [22,23].

RESULTS

Multi-alignment was a powerful tool to compare DNA, RNA, and protein 
sequences from different sources to see mutations and deletions of RNA 
viruses like SARS-CoV-2. The multi-alignment of 30kb genomes gave 100 
pages of data and thus we only showed the representative area with deletions 
and point mutations (Figure 1). There were hundreds of silent mutations 
genome-wide but unless there was an amino acid change, title effects might 
occur. Figure 2 showed a multi-alignment portion of different COVID-19 
sequences where SGF deletion (5’-TCTGGTTTT-3’) occurred. We had 
given accession numbers, type of variant, and date of coronavirus isolation 
from patients starting Wuhan virus (B.0 variant) which was available first 
in December 2020. The SGF deletion was not prominent in early lineages 
like B.1 and B.1.2, as well as higher variants like B.1.160, B.1.389, B.1.177, 
B.1.177.17, B.1.177.218, B.1.416, B.1.429 including B.1.1.37, B.1.1.301 and 
B.1.1.317 but surprisingly B.1.1.7 variant and B.1.526 variant, had SGF 
deletion. More surprising fact there was no SGF deletion in B.1.617.2 
Delta variant (accession numbers: OL475604, OL745448, OU877926, 
OK465723, OM045751, OQ121361, OQ119975, OQ119976, OQ121585, 
OQ121550, OQ099094 and OQ099096) (Figure 2). The total amino 
acids of ORF1ab polyprotein varied in different important COVID-19 
variants and subvariants. For example, Wuhan=9096 AAs as also Delta 
variant. But three amino acid deletions (3675SGF) were found in ORF1ab 
protein (nsp6 protein region) of Alpha and Omicron BA.2/BA.5 
(ORF1ab=7093 AAs) but at the same region 3674LSG deletion, as well as 
extra 2083S deletion, were found in Omicron BA.1 coronavirus 
(ORF1ab=7092 AAs). Whereas, extra three amino acids (141KSF) 
deletions were found in Omicron BA.4 variant 
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(ORF1ab=7090 AAs) and such change was utilized to detect BA.4 Omicron 
variant by BLAST-2 alignment with oligonucleotide selected at the deletion 
boundary [24]. We multi-aligned 40 sequences of Omicron BA.1, BA.2, BA.4, 
and BA.5 subvariants including B.1.1.529 to demonstrate SGF deletion 
happened in all these Omicron variants including recently appeared B.2.75, 
BF.7, BQ.1 and XBB.1 (Figure 2). Truly, before the appearance of Omicron 
variants, B.1.617.2 and AY.X were the major coronavirus population but no 
SGF deletion was detected! On the other hand, all Omicron populations 
carried such SGF deletion! Such special distribution of SGF deletion 
suggested some way Omicron was derived from B.1.1.7 (Alpha) population or 
related B.1.526 (Iota) and P.1 (Gamma) but not B.1.351 (Beta). We thought 
B.1.1.7 may the source of the Omicron BA.1 variant because 69HV deletion 
in the spike appeared in B.1.1.7 first but Omicron BA.2 had no such 69HV 
deletion and that way such a variant may be created from P.1 or 
B.1.526 variant. However, the creation of Omicron~20 mutations in 
the RBD domain of spike protein likely happened through a thousand 
recombination and point mutations.

Figure 3 demonstrated the composite data of multi-alignment 
to demonstrate other minor deletions and point mutations in the 
ORF1ab like at the 82GHVMV locus (accession no. OP827777) and 
141KSF locus (accession no. OP591969) in the nsp1 protein and other sites 
like silent T>C mutation at 11269 positions. Now the question arises then 
what may be other factors for the severe pathogenicity of the Delta variant? 
We BLAST-2 aligned spike protein of Wuhan and Delta to see the 
important mutations as shown in Figure 4. We found two important 
mutations L452R (450R in Delta) and T478K (476K in Delta) in the RBD 
domain of the spike. At least the L452 mutation was found involved in 
immune escape and higher transmission [25, 26]. However, major spike 
mutations (T19R, T95I, G142D, E156G) and deletions (157FR) were 
located in the NH2 terminus (1-180 AAs) (Figure 4).

We also demonstrated the 119DF deletion in the Delta variant (Figure 
5). Such deletion in Delta sequences found in the database suggested 

truncated non-functional ORF8 trans-activator protein which interacted 
with many accessory cellular proteins like histones, MHC-1, and interferons 
[27-29]. Interestingly, ORF8 protein was also truncated in B.1.1.7 variant 
which also caused severe corona diseases (data not shown). In Figure 6, we 
showed the two important mutations (P4715L and G5063S) in the RNA-
dependent RNA Polymerase enzyme required for higher transmission and 
disease severity. Similarly, BLAST-2 similarity between Wuhan and 
Delta ORF1ab proteins showed two important mutations (P2046L and 
P2287S) in the nsp3 main protease. We know alterations of two Proline 
might be responsible for efficient protease activities needed for better 
viral assembly. We also showed the two important mutations (P6128S and 
A6319V) in the nsp14 ribonuclease of the Delta variant where the 
specificity of nuclease to host specific mRNAs might be changed. In 
truth, virus-host interactions select the disease severity, viral immunity, 
and virus clearance (Figures 7a and 7b).

We attempted to analyze the 3-D model structure of the SGF mutant of 
nsp6 protein but we found no crystal structure of normal nsp6 was solved 
yet. However, running SWISS-Model we found a mere 20% homology at the 
C-terminus with a hypothetical protein TT1805 from Thermus thermophilus 
HB8 and E. coli or S. aureus ribosomal protein S16 (ID: 6q97.1.P and 5t7v.1.F 
respectively) and model was incomplete  (data not shown). Pandey et al gave 
some model structures of nsp6 protein with seven transmembrane domains 
using AlphaFold software (Figure 8) [30]. The study indicated in tissue culture 
cells that SGF-deleted nsp6 may form better phagosomes in the replication 

Figure 1) Structure of SARS-CoV-2 and localization of deletions in the ORF1ab 
polyprotein. Note that spike protein was highly deleted and mutated than ORF1ab protein 
and more deletions were also reported in N, ORF7a, ORF7b, and ORF8 small proteins.

Figure 2) Multi-alignment to show the 3675SGF deletion was found in Alpha, Beta, 
Gamma, and Iota variants as well as in all Omicron subvariants but not in Delta 
variants. (Alpha=B.1.1.7; Beta=B.1.351; Gamma=P.1; Iota=B.1.526; Delta=B.1.617.2 
and AY.103; Omicron=BA.1, BA.2, BA.4, BA.5, BF.7, XBB.1.5, BQ.1, BN.1 etc).

Figure 3) Detection of ORF1ab other deletions in SGF deletion SARS-CoV-2 mutants as 
well as T>C silent mutation (GAT=GAC=D; no AA change) at 11269 positions.

Figure 4) The Spike protein mutations (nine AAs point mutations and two AAs 
deletions) in the delta variant. The sequences were derived from accession numbers 
NC_045512.2 (Wuhan; protein id: YP_009724390) and OM542166 (Delta; 
protein id: UKM99895). Parts of the alignment were shown. Major changes were 
found in 1-180 AAs and in the RBD domain L452R and T478K two important 
mutations needed for higher pathogenicity. The important 157FR two AAs deletions 
were shown with adjacent E156G point mutation. The D614G dominant mutation 
was also shown that involved in higher transmission in presence of important R4715L 
RdRp mutation in ORF1ab polyprotein (not shown here).

Figure 5) The delta variant had important 119DF two AAs deletion at the end of the 
ORF8 protein which might be involved in an increase in pathogenicity. Note that another 
VOC B.1.1.7 COVID-19 also had truncated ORF8 protein in its genome but other VOCs 
like Beta, Gamma, and Epsilon, etc had normal length ORF8 protein.
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complex with or without nsp3 and nsp4 proteins [31]. Thus, more work is 
necessary to solve the function of SGF deletion mutants. Nevertheless, we 
speculated the other mutations in RdRp, protease, and ribonuclease of the 
Delta variant to attend high titer, higher transmission, and possibly high 
risk of life.

DISCUSSION 

The Alpha, Beta, Gamma, and Delta coronaviruses were spread maximum 
at certain time points but were diminished due to viral herd immunity as 
well as rapid worldwide inoculation with spike vaccine which had shown 
to be best protective with high antibody titer [32]. We demonstrated a few 
genetic changes that surely gave high titer and severe disease patterns by 
Delta coronaviruses (Figure 2 and Figure 3). Such viruses form syncytia with 
human lung cells through ACE-2 receptors destroying cells [33]. However, 
the Omicron virus spread was maximum now and earlier human sera 
infected with Delta, Alpha, Beta, and Gamma corona viruses failed to cure 
Omicron virus-infected patients [34]. Surely, a clear demonstration of the 
absence of SGF deletion in the nsp6 protein of Delta coronaviruses was 
an important observation. The nsp6 protein forms smaller phagosomes 
at the host membrane of lung cells for virus assembly and internalization 
and such an autophagy process is important for the virus life cycle [35]. 
Similarly, ORF8 protein 119DF deletion mutant in Delta coronavirus was 
another important fact (Figure 5). Many small accessory proteins like nsp6, 
nsp9, ORF3, ORF7a, and ORF8 were involved in important functions 
in COVID-19 spread and viral immunity, and more and more work and 
Database analysis needed for coronavirus control [36-38]. Interestingly, more 
and more spliced mRNAs were detected in COVID-19-infected cells and 
more small trans-activator proteins may be discovered soon demonstrating 
the clear mechanism of coronavirus disease [39]. The complete structure 
of ORF1ab polyprotein contributed to higher transmission with higher titer 
in the Delta variant causing high fatality. If terminal 2 AAs deletion 
(219DF) in the ORF8 protein of Delta variant has any effect on 
pathogenicity is not clear yet.  The deletions of amino acids Asp119 and 
Phe120 in ORF8 of the delta variant resulted in structural instability of 
ORF8 dimer (PDB ID:7JTL) caused by disruption of hydrogen bonds 
and salt bridges as revealed by structural analysis and MD simulation 
studies [40].

CONCLUSION
MHC-1 interactions may be hindered causing a better immune response by 
the host.
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