
Dept. of Artificial Intelligence Univ. Nacional de Educación a Distancia (UNED), Spain 

Correspondence: Juliot Rives, Dept. of Artificial Intelligence Univ. Nacional de Educación a Distancia (UNED), Spain e-mail: jrives@dia.uned.es 
Received: May 8, 2023, Manuscript No. puljpam-23-6411, Editor Assigned: May 10, 2023, PreQC No. puljpam-23-6411(PQ), Reviewed: May 12, 2023, QC 
No. puljpam-23-6411(Q), Revised: May 14, 2023, Manuscript No puljpam-23-6411 (R), Published: May  31, 2023, DOI:-10.37532/2752-8081.23.7(3).146-176 

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) 
(http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that 
the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact 
reprints@pulsus.com

J Pure Appl Math Vol 7 No 3 May 2023 146

 RESEARCH ARTICLE 

The zero delusion 
Julio Rives 

INTRODUCTION 

 e present this essay and explain why zero is problematic.  

area upon questioning zero in earnest. 

Our motivation derives from a series of inquiries. Can humans 
naturally conceptualize zero? Why was number zero endorsed after 
so many centuries of ostracism? How did its historical and 
sociological context affect its endorsement in science? What 
differentiates zero from other numbers? Is it real? Are we applying 
and computing zero appropriately? Is this invention necessary or 
advantageous? Do we indeed 

W 
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ABSTRACT 
Zero signifies absence or an amount of no measure. This 
mathematical object purportedly exemplifies one of humanity’s 
most splendid insights. Endorsement of the continuum 
consolidated zero as a cultural latecomer that, at present, 
everybody uses daily as an indispensable number. Zero and 
infinity represent symmetric and complementary concepts; why 
did algebra embrace the former as a number and dismiss the 
latter? Why is zero an unprecedented number in arithmetic? Is 
zero a cardinal number? Is it an ordinal number? Is zero a "real" 
point? Has it a geometrical meaning? To what extent is zero 
naturalistic? 
A preliminary analysis indicates that zero is short of numerical 
competence, contrived, and unsolvable. We find it elusive when 
we dig into zero’s role in physics, especially in thermodynamics, 
quantum field theory, cosmology, and metrology. A minimal 
fundamental extent is plausible but hard to accept due to zero’s 
long shade. In information theory, the digit 0 is inefficient; we 
should replace standard positional notation with bijective 
notation. In communication theory, the transmission of no bits 
is impossible, and information propagation is never error-free. In 
statistical mechanics, the uniform distribution is inaccessible. In 
set theory, the empty set is ontologically paradoxical. Likewise, 
other mathematical zeroes are semantically vacuous (e.g., the 
empty sum, zero vector, zero function, unknot). Because division 
by zero is intractable, we advocate for  the  nonzero  rational  

numbers,  ,  to  build  a  new  physics that reflects nature’s 

countable character. We provide a zero-free and unique based  

representation  of  the  algebraic  numbers  punctured  at the  origin, 

 the  computable  version  of  the  complex  numbers. 

In a linear scale, we must handle zero as the limit of an asymptotically 
vanishing sequence of rationals or substitute it for the smallest possible 
nonzero rational. Zero, as such, is the predetermined power in- dicating the 
beginning of logarithmically encoded data via log (1). The exponential 
function decodes the logarithmic scale’s beables back to the linear scale. 
The exponential map is crucial to understand advanced algebraic concepts 
such as the Lie algebra-group correspondence, the Laplace transform, and 
univariate rational functions in cross-ratio form. Specifically, linear 
fractional transformations over a ring lead to the critical notion of 
conformality, the property of a projection or mapping between spaces that 
preserves angles between intersecting conics. Ultimately, we define "coding 
space" as a doubly conformal transformation domain that allows for zero-
fleeing hyperbolic (logarithmic) geometry while keeping relationships of 
structure and scale. 
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Scope and rationale 

This essay is a generalistic investigation of the number zero’s role in 
diverse momentous fields of mathematics and physics. Because our 
society has internalized zero, one can hardly find academic articles 
about its usage or facets, except for some research on zero’s genesis and 
a few analyses of the nothingness. We feel we are entering an untrodden
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understand what zero means? We aim to answer these 
questions and explain why zero is delusive to a degree. Our 
long-term goal is to raise awareness of the unfavorable 
consequences of overlooking foundational issues in 
mathematics critical to make headway in physics at the most 
fundamental level.  

Zero’s history is "full of intrigue, disguise, and mistaken 
identity", allegedly culminating in one of humanity’s most 
splendid findings[1]. "The most useful symbol in the world, 
the naught", is only a recent cultural asset because humans 
since forever ignored or deemed it nonintuitive and 
unsettling before its adoption by the Europeans in the 16th 
century [2]. The late Sumer, Babylonian, Chinese, Maya, and 
Inca civilizations employed a place-value numeral system 
where a distinctive mark played the role of the current digit 
0 [3]. However, it 
was not used alone as the current number zero. Likewise, 
with minor exceptions, Ancient Egypt, Ancient Greece, and 
Rome did not recognize zero. Today, we utilize zero daily as 
an intellectual resource, but the extent to which it is 
universal and serves scientific purposes is unclear. 

As a philosophical conception, zero symbolizes absence or 
void, whereas as a number or value, it "is an integer 
representing a quantity amounting to nothing" [4]. In this 
paper, however, we will not stress the dissimilarity between 
the abstract meaning and its representation for clarity and 
eloquence of our exposition. Moreso, some theorists 
introduce a further disparity between the numerical digit 
lone and 0 as a vacancy between other symbols of a numeral 
codeword (e.g., a string of digits) in positional notation (PN) 
[5]. Since the role of 0 has the same computational essence 
alone or accompanied, we will also dismiss such a difference. 
Consequently, we will adopt the widespread assumption that 
zero designates "a count of null balance" for analysis 
purposes. 

Is zero authentic or fictitious? If the universe (or multiverse) 
is infinite, zero finds no "space" to exist; else, nothingness "is" 
out of our finite universe. In the latter case, can zero also live 
within our finite universe (or multiverse)? This prospect 
depends strongly on whether our universe is natural, which 
is unclear [6]. If it is not, zero might be a product of chance. 
Assuming that our finite universe (or multiverse) is natural 
due to a direct cause or the outcome of an evolutionary 
process, we can expect its stuff to be also natural and ask, 
where is zero? 

On the one hand, zero is anything but naturalistic, unlike 
any other whole number, because it has no physical 
counterpart. Interactions and transactions always exchange 
nonzero stuff in physics, chemistry, biology, or sociology. On 

the other hand, zero is a potential source of human
knowledge. 

a b

1 

Primates, crows, and bees also catch some aspects of 
emptiness. However, is this zero-like sense a "perception of 
absence" or a "lack of perception" [7-9]? 

No phenomenology offers evidence that zero is objectively 
true, suggesting that the animal world plausibly grasps zero as
a posteriori knowledge (learned by experience), specifically as
the logical complement to the presence of "something" 
instead of a simple null numbering of elements. We uphold 
this idea because zero is not innate in humans, as deduced 
from the history of zero and research projects proving that it 
is hard to integrate into our mental schemes [10]. Perhaps, 
we harness this tool supposedly unique to humans in the 
form of a somewhat different mathematical entity, say the 
asymptote of a vanishing sequence. For example, is a 
derivative "identically zero" or the limit of a tangent with no 
slope? Alternatively, we might take zero as a sheer tiny gap; 
mind the linear algebra’s dual numbers to see how to
formally extend a number a by adjoining a multiple b of the 
nonzero differentiation unit " with vanishing "n for a natural 
number [11]. 

Our inability to acknowledge that zero is unreachable has 
delayed advancement in physics. The fact that the 
"introduction of gravity into quantum field theory appears to 
spoil their renormalizability and leads to incurable 
divergences" has finally induced us to explore a fundamental 
limit to the resolution of spacetime [12]. A Minimal History 
chronologically examines the various approaches and 
tentative values, as well as several thought experiments 
related to Quantum Gravity (QG), concluding that the 
Planck length restrains the precision of distance 
measurements, regardless of the observable; to wit, lapse, 
position, radius, wavelength, string spread, connection 
distance, slit diameter, crosssection, deformation parameter, 
surface area, particle size, cell volume, sprinkling density, or 
lattice resolution [13]. Near the Planck length, we enter a 
realm of intractable natural indeterminacy, whence 
unpredictability. Still, a nonzero curvature radius at least 
makes finding a helpful metric possible. 

Information theory (IT) also provides evidence that the 
essential attributes of a system cannot be nil. Assuming that 
"every physical quantity, every it, derives its ultimate 
significance from bits", our rationale is twofold [14]. 

First, the universe arguably utilizes a positional (logarithmic) 
system to encode data. A natural code must store numbers 
efficiently, implementing some form of PN to concentrate 
more or less information in every numeral’s place depending 
on its position, the attribute, and context [15]. The 
omnipresence of Benford’s law and the amazing Gauss–
Kuzmin distribution confirm this presupposition [15-19. "It’s 
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a Logarithmic World", where the properties of a system are 
data spaces to record information on a logarithmic (or 
harmonic number) scale. Since reserving space for a null 
feature is wasteful, zero does not need a fundamental 
representation. In other words, if nature links extent with 
information univocally, zero is never an encoded number. 

Second, "Computation is inevitably done with real physical 
degrees of freedom, obeying the laws of physics, and using 
parts available in our actual physical universe" [20]. These 
parts are open systems with minimal internal activity to 
support the logarithmically encoded data. Eventually, the 
system will decode its properties back to the linear world 
utilizing the exponential function. Because zero is the value 
of the unit encoded in any base, i.e., exp (log (1)) 1, zero is 

unnecessary in this case, too. Then, the system will share the 
decoded information via its communication channels with 
the surrounding systems, and these will react to the system 
seeking to minimize the information differential. Ultimately, 
to preserve the entropic gap, the system will encode the new 
environmental scenario to update the content of its 
logarithmic data structures. This cycle implies a relentless 
interplay between temperature and thermodynamical 
entropy on one side and the coding radix and the 
information entropy on the other. We will briefly discuss 
this parallelism between quantum thermodynamics and IT. 

Science accepts offhand that zero is a number and infinity is 
not, but this mindset is somewhat incongruent. We find the 
symmetry between them in everyday life; depending on the 
context, we will recognize zero signifying "nothing", "false", 
"start", "never", "origin", "transmitter", "timelessness", or 
"annihilation", whereas infinity meaning "everything", "true", 
"end", "always", "destination", "receiver", "eternity", or 
"creation". Effectively, these pairs of terms transform into 
each other by reciprocity. The interdependence between zero 
and infinity requires us to accommodate or expel them in 
tandem. 

No number set elucidates the zero-infinity polarity as  

does. A rational number embodies relativity and mutuality 
between a pair of magnitudes, suggesting that we can 
conceive it more appropriately as a two-dimensional 
relational object, and relationships are fundamental to 
comprehending the cosmos. It turns out that zero can be a 
numerator but not a denominator, i.e., one of the two 
dimensions has a point, namely 0, less than the other, so we 
cannot exchange the two axes, hampering the view of a 
rational number as a pair of integer components handled on 
an equal footing. Because zero, like infinity, is generally 
uncomputable, we propose the numerator never to be zero. 

Thus, we will restrict ourselves to the nonzero rational 

numbers, {0},    a fully symmetric set graphically 

representable on a square grid of nonzero integers 

{0}  . For 
2

excludes the axes, we can calculate a 

reciprocal by swapping the coordinates without exception; 

for example, , ( , ) ( , )x y x y y x   or 

, (tan (arctan 2 ( , )).xx y y xy   Moreover, we will explain

how an ordered list of nonzero rationals can unambiguously 
represent a nonzero algebraic number. "Algebraic numbers, 
which are a generalization of rational numbers" [23], are the 
"algebraic closure" of and represent the constructive 

version of the set of complex numbers . Focussing on the 

algebraic numbers punctured at the origin, {0},A A   we 

maximize computability without forfeiting the 
limiting values 0 and  . 

The shade of the nonzero integer, rational and algebraic 

numbers is long. An irreducible double ratio 
a

c
b

d
is a 

rectangle in the 
2

lattice. The rectangles of unit size 
( 1)ad bc   form the modular group, the group of linear 

fractional transformations (LFT) ( ) ( )az b cz d  acting on the 

upper half of the A  plane ( [ ] 0),z A and z   , where 

{ , , , }a b c d  . Instead, if { , , , }a b c d  , we obtain the 

Möbius group, the group of LFT that maps circles to circles 
preserving angles between crossing or touching circles 

throughout A . Specifically, for any three points 

{ , , , }a b c d  , there is a Möbius map f that takes 

( ) , 1,z A to f z A Ato and C to    

Möbius transformations are the most straightforward 
examples of conformal transformations, mappings or 
diffeomorphisms (smooth deformations) that do not alter 
angles within a point’s neighborhood but possibly distort 
extent or curvature. Although many conformal functions are 
not Möbius in two dimensions, it turns out that an 
exponential map is locally a Möbius map conformal at any 
point of A. Moreover, the exponential’s inverse function is 
also a conformal map within the principal branch. The give-

and-take between the base  logarithm log z


and power 

z
 maps, with 0  , provides a universal method of

information encoding-decoding. The Lie group-algebra
correspondence and the Laplace direct-inverse transform
undertake the same two-way procedure. 

Conformality is principally a local property generalizable 
over rings; all conformal groups are local Lie groups 
represented by a class of LFT. Conformal maps preserve 
conic forms and angles between intersecting conics through 
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the almighty cross-ratio, another double ratio of differences 
between four points or vectors. This rational construct is the 
paradigm of regulating zero and infinity in the same 
framework and a building block of conformal maps. Taking 
the crossratio’s logarithm, a subset of the ring’s domain 
becomes a coding space, a region of negative curvature 
characterized by a coupling factor between distance and 
distortion of angles. Within a coding space, a geodesic line is 
a conic, the calculation of distances uses hyperbolic 
geometry, and the zeroes and poles of an LFT are limiting 
values of (vanishing and diverging) sequences, all of which 
allows relaxing the notion of proximity, opening the door to 
quantum nonlocality. Physically, conformality is closely 
related to randomness in two dimensions and causality and 
scale invariance in all dimensions. Because of the 
fundamental curvature factor that blocks flatness, i.e., zero, 
conformally compactified spaces are at the heart of Quantum 
Field Theory (QFT) and many gravitational theories, 
representing one of the avenues to a robust theory of QG. 

The following sections delve into zero from different stances. 
First, we introduce the main trouble with zero; it is 
inseparable from infinity because both comprise the same 
fundamental duality. Then, we explain how zero causes 
havoc on General Relativity (GR) and QFT, setting off an 
unsolved crisis that QG will someday overcome. Zero 
fictitiousness leads to the prospect of a universal minimal 
length. We analyze the role of zero in IT; physicality is 
computability, and zero is uncomputable. We posit that 
change is equivalent to information flow, both unstoppable. 
Because information coding must be efficient, the universe 
likely uses PN; unlike standard PN, bijective PN creates zero-
free and unique numeral representations that boost 
productivity. We scrutinize Set Theory (ST) concerning the 
signification of emptiness, finding that the null class is a 
waste stone, an obstacle for the number sets , , , , , et 

cetera. Next, we explain the paramount significance of a 
"natural" ratio, an irreducible fraction between nonzero 
magnitudes. The irregularities and inconsistencies that the 
number zero provokes to the rationals resound through the 

based number sets, so we bet that is the primordial 

number system and 

A

 instead of is the number system 
upon which computability grows. Then, we point out where 
and how to apply the nonzero "polyrational" numbers to 
obtain versatile mathematical structures with a high impact 
on physics, e.g., LFT of the Möbius, Laguerre, and 
Minkowski planes. Finally, we review the cross-ratio, a 
prominent rational construct that gives rise to generalized 
conformal transformations and the idea of coding space. In 
the concluding remarks, we underline that zero’s 
involvement in science is not innocuous and that we have 
already devoted too much effort. 

This work has taught us that zero is a foreign construct 
whose utilization separated from infinity is deceptive. We 
have also discovered that zero and infinity are dual beables, 
so we can throw light on how to respond to the following 
existential question; "Lump together literally everything 
contained in ultimate reality. Now call it all by the simple 
name ’Something’. Why is there ’Something’ rather than 
’Nothing’?" In picturesque language, the sum of (an infinite 
amount of) "nothing" (absolute nonexistence, 0) and (a finite 
amount of) "everything" (complete existence,  ) constitutes 
the primeval duality principle (valid for the universe, 
multiverse, or metaverse) pivoting on the identity (relative 
nonexistence or existence, 1) as a brute fact. In turn, 
multiples of this unit ("something") appear in two versions, 
the encoded or intensive arrangement, which nature keeps 
on a logarithmic scale, and the decoded or extensive one, 
which the cosmos exhibits on a linear scale. The infinite 
nothingness, i.e., zero, "lives" on the boundary of the 
encoded world as a potential unit, namely log (1), lingering 
where spacetime begins (see Fig. 1). 

The troubles with zero 
This subsection anticipates that the main troubles with zero 
are its unreality, irrationality, and inseparability from 
infinity. 

Zero is a recent creation "destined to become the turning 
point in a development without which the progress of 
modern science, industry, or commerce is inconceivable." 
Theoretically, "the integer immediately preceding 1" is the 
additive identity of the mightiest algebraic structures. "Zero’s 
absence would stunt the growth of mathematics". Nowadays, 
most people think zero is a number like others. Many 
mathematicians will contend that saying the contrary is a sad 
mistake, and some will even discredit those who impugn the 
verisimilitude of zero. Not so fast! Zero is peculiar and causes 
complications immediately. For instance, in Frege’s view, "0 
is the number which applies to the concept unequal-to-itself". 
Mathematics deals with it ad hoc; zero is an even number 
(the evenest number!), but the only function is odd and 
even. It produces disturbing dichotomies, too; zero is a 
positive and negative value, neither a prime number nor a 
composite number. 
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Figure 1) Nothing, Everything, Unit, Something, the two natural 
scales, and the "natural projective line" in yellow with the 
indeterminate element  

Detractors of zero affirm that it is not cardinal or ordinal 
and cannot even be an object’s property. For example, the 
class "apple" disappears if we have no apples and the 
attribute "age" is not in a birth certificate. Zero is even an 
unneeded number. Arithmetical operations with the number 
zero are spurious. For instance, consider the arithmetic mean 
calculation of the number of things in a group of bags; 
should we regard the empty ones? If affirmative, the answer 
is the total number of pieces in bags with content divided by 
the sum of empty bags and bags with content; zero is not 
involved in the calculation. We can write the equation 

0x y z   as x y z  . Mathematical definitions and 

theorems largely allude to nonzero numbers, entities, or 
solutions because the scope of applicability of zero is usually 
bland or negligible. 

polynomials and the sine function vanishes is theoretically 
unsolvable, not to mention in practice. If "the coordinate 
system remains as the necessary residue of the ego-
extinction", the geometry of the origin (zero) is mute, nay, 
impregnable subjectivity. The probability of encountering 
nothing in the cosmos is so infinitesimally small that it is de 
facto nil; "it is impossible for there to be nothing", nothing is 
physically outside our universe, and even debatable that nada 
existed with exclusiveness before the Big Bang. The following 
section will further reason that zero is unobservable and 
unbelievable. 

We have already introduced the contention that zero is 
neither naturalistic nor motivated by dependable scientific 
criteria. Despite living in a quantum universe where 
information is physical, possesses a discrete character, and 
serves computational purposes, our central mathematical 
tools give off the continuum’s aroma. The immaculate real 
numbers, "true monsters", govern the n-dimensional 
Euclidean space, a mythical realm of maximum density 
having no room for holes. However illogical as it can be, we 
need the continuum because its perfection provides us with 
protection, which is again not a scientific reason but a 
psychological one. Zero satisfies our longing for 
(mathematical) "connected compactness". Our fear of empty 
spaces and Newton, Cantor, and Poincaré’s long shade have 
been barriers to unmasking zero. 

Nothing points to nothingness in IT. A system’s information 
(lack of entropy) correlates with its internal thermodynamical 
activity, which depends on the system’s quantum mechanical 
degrees of freedom. These reify the system’s properties to 
sign the mantra "quantum physics is an elementary theory of 
information". The system balances when its entropy reaches 
a maximum. However, given that a generic quantum system 
is "contextual", excepting possibly the universe, and never 
definitely hermetic, the environment causes decoherence 
interacting with the system’s degrees of freedom that bear its 
intensional information. The fluctuation of the 
corresponding microstates permanently unchains processes 
that take the system out of equilibrium, permeating the 
universe with a renewed distribution of information. This 
emergent thermodynamics indicates that nature associates 
"transformation" with "information exchange". The present 
constantly varies through interactions, so we always perceive 
a series of material effects and a notable phenomenology 
linked with information currents. Since propagating null 
information is nonsensical, inaction is equivalent to a lack of 
information flow. Because inactivity is never absolute (e.g., 
like a time crystal reveals), information flow is incessant. 

The notion of infinity as the limit of a diverging sequence 
sounds logical, despite considering its twin, zero, not a limit 
value but a number. This inconsonance has negative 
consequences in thought, algebra, and calculus. Perhaps, the 
most significant proof of the intimate fellowship between 
zero and infinity comes from logic. According to Gödel’s 
theorems, we can find unprovable statements in a 
contradiction-free and enumerable logical system. Vice versa, 
if such a system is complete (the truth or falsity of any 
axiomatically-constructed piece of knowledge is provable 

Zero uselessness appears not only in algebra (zero number, 
vector, matrix, tensor, ring, et cetera). Functional analysis, 
ST, and Category Theory consider the zero function, the 
empty set, and the empty categorical sum as additive 
constants, despite being trivial elements. In knot theory, a 
zero knot (unknot) is topologically equivalent to a circle, and 
any two closed curves in three-dimensional space with a 
linking number zero are unlinked. In computer science, the 
zero Turing degree is the equivalence class that contains all 
the algorithmically solvable sets. All these zeroes are 
mathematical sugar, flimsy stuff denoting the same idea of 
"nothing" addressed to a specific branch in mathematics; to 
wit, no number, no vector, no matrix, no tensor, no ring, no 
function, no set, no categorical sum, no knot, no link, and 
no uncomputability. We will only examine the empty set 
among these zero objects because of its impact on . 

Furthermore, some facts sustain that zero is beyond our 
sensory and processing faculty, an imaginary and often false 
friend. According to Richardson’s undecidability results, 
determining whether a simple expression that involves 
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within the system), we can find incongruencies. Thus, a 
system requires null or uncountably infinite cardinality to 
reach axiomatical completeness and consistency 
simultaneously; logical insufficiency and uncomputability are 
crucial properties that unite zero and infinity. 

In mathematical physics, the Dirac delta "function" is a 
prime object that masters the zero-infinity duality. It serves as 
a distribution gateway to the continuum, and vice versa, 
from the reals to discontinuous math. Its output vanishes 
everywhere except when the domain value is zero, whereas its 
integral over  equals one. This function is preeminent in 
physics because it allows calculating a system’s response to 
the input’s total, i.e., as an impulse (e.g., an instantaneous 
collision) or potential (e.g., a point mass), escaping from 
details, the transition processes or layers at lower integrative 
levels. 

Is the Dirac delta distribution physical? No, it is only the 
abstraction of an immeasurable perturbation extended over 
no period. We will justify that a being’s existence needs to 
take up nonzero spacetime, and a change requires nonzero 
spacetime to perform. Even algebraically, we must reject the 
utter punctuality of zero and infinity; "with the extension of 
variable magnitudes to the infinitely small and infinitely 
large, mathematics, usually so strictly ethical, fell from grace". 
We understand the Dirac delta better as the limit rendered 
by a finite sequence of distributions 

2 2( ) 2 ( exp(( ) )) ,x x


    with   . As  dissolves, 

the bumps get sharper and sharper, concentrating on a 
prong or pin at the origin. Thus, we recover the 
mathematical and physical sense of this duality of beables 
operating as a logarithmic scale’s communicating vessels; 

when x  approaches the origin, 
log1

( ) 1x


 


 diverges, 

whereas 
1 log1

( ) 1x


 


  vanishes. Besides the Dirac delta 

distribution, we can find in other branches of mathematics, 
such as projective geometry, and physics, such as cosmology, 
examples of the symbiotic bond between the prospect, not 
the actuality, of zero and infinity providing us with a 
renewed vision of the universe. 

Combining both concepts leads to formidable mathematical 

tools and physical models. Since {0, } ,A   the ratio z   

exists { , } ;z A 
lim

log 1

z 

 
 diverges, and lim

1 log 1

z 

 

vanishes. Similarly, line curvatures in the A  plane are tacitly 
nonzero; specifically, rays are not straight. A  interprets 
infinity as "the last point" observed from the origin at the 
end of every line, wrapping around a giant circle, where zero 
and infinity are antipodal points (180 degrees apart). This 
perspective allows us to identify the zeroes and poles of a 
modular or Möbius transformation with limiting values like 
0 and  , around which we can define an arbitrary open 
region where the mapping behaves without exception 
regularly. Indeed, the modular group’s action is the 
automorphism group of the "real-algebraic projective line" 
(mapping real-algebraic numbers to themselves and rationals 

to themselves), while the action of the Möbius map swaps 
the "algebraic projective line". 

Like a Möbius map, a conformal map (e.g., the exponential 
function) leaves angles unchanged around every domain 
point or singularity and stretches equally in all directions, so 
the nearer a figure is, the better its shape is preserved. We 
also say that a manifold is conformally flat around a point if 
a diffeomorphism maps its neighborhood onto flat space, 
meaning that the angle between intersecting geodesics rather 
than distances is what locally matters. The proportionality 
(conformal) factor between the manifold and the flat metrics 
is physically an exponential function of a scalar potential that 
never dissipates. Therefore, conformality generally makes 
proximity a relative condition, allowing us naturally to deal 
with the small and the large interchangeably while fleeing flat 
(and infinitely curved) spaces. 

Although we use zero as an ordinary number of a linear 
scale, the Dirac delta distribution, the Laplace transform, the 
Möbius group, the cross-ratio, and the conformal 
transformations point to handling zero and infinity together 
as unreachable binary limits of an algebraic sequence. This 
belief is evident to Descartes, who argues that "There is no 
imaginable extension which is so great that we cannot 
understand the possibility of an even greater one, and so we 
shall describe it as Indefinite. Again, however many parts a 
body is divided into, each of the parts can still be understood 
to be divisible, and so we shall hold that quantity is 
indefinitely divisible." Moreover, we must take as many steps 
forward from zero to get infinity as steps back from infinity 
to get zero. This symmetry reflects that these dual antagonists 
or complementary mates of a number set are two sides of the 
same coin. 

ZERO IN PHYSICS 

On why physics must distinguish the arbitrarily small from 
the incommensurably small and believe in a minimal natural 
extent. 

Elusiveness 
No clue so far demonstrates that zero is physical. The Third 
Law of Thermodynamics stays current; we cannot reduce the 
entropy of a closed system to its final zero. A particle’s 
lifetime can be very near but never precisely naught. A 
spectral line has nonzero linewidth and extends over a range 
of frequencies, not a single frequency. According to 
Electromagnetic Theory, a photon with zero wavelength 
would have boundless energy. Although a photon has no rest 
mass, nobody has ever gauged it strictly zero. Indeed, some 
theoretical and exploratory studies indicate that the photon’s 
rest mass can be nonzero. Experimentally, a strong force’s 
gluon rest mass is < 1:3MeV. Is it an insignificant value? The 
answer is troublesome because "it is unclear whether the 
massless theory is really the limit of the massive one." 
Nobody has ever measured a body occupying no space, 
infinite mass density, or infinite charge density. The 
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cosmological curvature parameter of the universe is very 
close to but not "identically zero". 

Nil reckoning is intricately related to the notions of 
"continuum" and "infinitesimal", symbolically represented as 

1  . Euclidean geometry strongly influenced Borrow and his

pupil Newton. In addition, they focused on movement, 
which seems to be continuous. However, classical, 
Newtonian physics does not leave space to indetermination, 
against today’s evidence that we cannot precisely localize 
objects in the spacetime fabric. Since then, calculus 
developers used the reals rather sloppily. 

Wallis introduced the modern concept of infinitesimal, later 
consolidated by Leibniz and Nieuwentijdt, defined as an 
indivisible quantity "with arbitrarily small but nonzero 
width". Nearly two centuries later, Cantor hated the theory 
of infinitesimals, which he branded as the "cholera bacillus" 
of mathematics, and the idea of getting them mixed with his 
theory of transfinite sets; from his angle, on no account can 
be infinity and infinitesimal understood as inverse of each 
other, despite traditionally, if   is infinitesimal for b, b is 

infinite for  . 

is completely untestable" because "We can never measure 
an infinity or a zero". Additionally, the origin is invisible 
when we behave as observers. From our outlook, we cannot 
see ourselves or beyond the last visible number; we only 
capture what is subjectively at distances 1, 2, 3, …, N, 
conditioned by our physical limitations. 

Nonetheless, the reader can object that we usually run 
into zero as a solution or singularity of a scientific or 
engineering problem. As a solution, zero is either a trivial 
result or an outcome with a negligible magnitude. Thus, it 
should come with no physical units and would not 
strictly require a number representation. As a 
singularity, zero deserves further analysis. 

-based laws of physics always break down at their
conjoined singularities. Informally, a singularity is a domain 
value that involves some blank magnitude causing the law to 
behave strangely. A zero at the wrong place yields an 
unmanageable infinite quantity that resists an appropriate 
interpretation and impedes deriving new results. True 
singularities are hypothetically possible but also the primary 
source of criticism of GR. Specifically, the Penrose-Hawking 
singularity theorems consider singularities inescapable, 
although they are invisible to us outside of a black hole or 
even to an infalling observer. If singularities were genuine, 
they would perhaps reside within an elementary particle, as 
virtual particles, a black hole, or any other elusive form, a 
possibility that contrasts with their historical lack of 
evidence. 

The surge of QFT seemed once to overcome the theoretical 
problem. Even though a field’s value can be zero everywhere 
classically, our quantum universe cannot obliterate a field’s 
uncertainty. According to QFT, which rules the Standard 
Model of Particle physics, quantum fields are quantities of 
critical features of spacetime that at every point continually 
fluctuate in their lowest energy state; the vacuum of a 
quantum field is unstable, vibrating around a ground level 
represented by a positive minimum-energy configuration. 
QFT can manage these fields separately by employing 
regularization and renormalization techniques based on 
fitting parameters, usually cutoff regulators, that attenuate 
singularities of observables and control self-interaction loops 
to absorb divergences, giving rise to "effective theories". For 
instance, adjustable infinitesimal distances allow calculating 
the particles’ specific mass and charge.

Nevertheless, this "quantum fuzziness" is "not enough to deal 

with the 21 r  singularity in the gravitational force." In other 

words, an effective theory of QG can be consistent but lacks 
predictive power because new infinities arise continually. To 
worsen things, the aggregation and integration of the so-
called vacuum’s zero-point energy density oscillations 

Notwithstanding, inspired by Fechner’s work on how a 
psychological sensation relates to the physical intensity of a 
stimulus, Poincaré was "who set out most clearly where 
debates about the real numbers were to divide 
mathematicians and scientists." Poincaré said (Mathematical 
Magnitude and Experiment in) that "the rough results of the 
experiments may be [...] regarded as the formula of the 
physical continuum." Poincaré accepted, used, and promoted 
the infinitesimals in what is presently known as metrology. 

Regardless of how Cantor or Poincaré came to their 
conclusions, the fact is that infinitesimals evolved as 
quantities stemming from the continuum examined in the 
field of the minimal, potentially perceptible but 
indistinguishable from zero. Thus, observables became a 
prime mover of this ultra-dense medium, although, 
ironically, a measurement is only accurate and precise to a 
degree. 

The unobservability of zero remains an 
unsolvable pragmatical problem. For instance, are 
rounding errors of the initial conditions or results in 
any real-life numerical problem evitable? How can we 
ensure that an observed body’s property, e.g., rotational 
speed, is zero? We must measure infinitely rigorously to 
prove a value is nil. Zero is unreachable except for the 
incidental zero level of the human-designed scales, such 
as the Julian calendar or Celsius temperatures. In general, 
"An infinite precise statement that there is zero change [...] 
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associated with every quantum field contribute to the 
cosmological constant with a magnitude whose theoretical 
value is ridiculously greater than the experimental data; the 
observed value of the cosmological constant beats zero 
slightly but significantly, begetting a mild curvature of 
spacetime. 

The experimental elusiveness of zero and the fundamental 
incongruency of a singularity are enormous obstacles urging 
physicists to devise a theory of gravity in conformity with GR 
and Quantum Theory. Finitism is a must because "When 
Bohr tells us that quantum theory gives us the only objective 
description of nature of which one can possibly conceive, is 
he not also telling us that no description can make sense 
which is not founded upon the finite? [...] Encounter with 
the quantum has taught us, however, that we acquire our 
knowledge in bits; that the continuum is forever beyond our 
reach." This reasoning suggests a route to arrive at a QG 
theory that combines the functional definition of quantum 
action, the feasibility of countable discreteness, and a 
constructive and practical concept of probability. 

The unifying thread of this approach is Feynman’s Path 
Integral formulation of the Principle of Stationary Action. 
The probability of an event is a mean of the occurrence 
probabilities for the finitely countable possible ways, i.e., 
paths, to fulfill the event, e.g., a trajectory between two 
points or a transformation between two quantum objects or 
states. Moreover, a path’s probability is a mean of the 
intermediate quantum objects or processes it transits 
through and depends on the curvature of a manifold of 
these transition quantum states; negative curvature 
(regarding the mean) would decrease occurrence probability, 
while positive curvature would be attractive. Specifically, 
when a body computes a Sum over Histories, the different 
nonzero wave-like amplitudes integrated over a curved space 
will reinforce or cancel each other to produce the 
quantummechanical course that the particle depicts. This 
least-changing action represents an asymptotic stability limit, 
not a concrete static path; absolute steadiness is unphysical. 

Irrespective of a body’s action, many observable quantities of 
interest in QFT can only take values in discrete sets of 
integers or half-integers. Discrete physics, especially discrete 
spacetime, wonders if the premises of laws and 
principles are mistaken. The question is pertinent because 
the reification of zero and infinity is a longstanding 
controversy, pending no matter how much physicists think 
these are well-settled mathematical concepts. is infertile 
and "unphysical", thwarting the most elementary change no 
matter how long the universe could spend processing it. 
Besides, a minimal size integrated into fundamental 
discreteness understandably exists, as we will analyze in the 
following subsection. 

This latter issue links to a crucial question; how long is 
"now"? We do not know what "now" is and can only offer 
partial responses. Classically, a "Timing on the scale of tens 
of milliseconds to a few seconds" protracts the subjective 
stint between past and future if we admit that our 
consciousness emerges from the activity of neuronal nodes. 
Concerning Special Relativity (SR), how can a spacetime 
event have different non-null properties or bear a change? 
There must be fundamental tensed facts or relations; "if the 
direction of time is given by the direction of causation, and 
spacetime points themselves stand in causal relations, then 
time is, as one naturally thinks of it as being, an all-pervasive 
feature of the world." Likewise, some events are in our past 
cone by the time we watch them, and we are in the past cone 
of those observers with whom we can communicate. Thus, 
part of the past and future exist, extending behind and in 
front of us. This thickness, compatible with an extinct past 
and an unborn future, guarantees a minimum flow of 
information and sidesteps many paradoxical situations of the 
block universe. At a fundamental level, the Margolus-Levitin 
theorem states that a quantum system of average energy E 

needs at least a time 2E to transit between orthogonal 

states. In general, neither a computational process can be 
instantaneous nor a time interval can have zero duration. 
Therefore, the present is feasibly pure "becoming" conformed 
by tics separated by Planck time multiples. 

Zero is also strange when we focus on an interaction’s 
inherent uncertainty. Empirical results come with two 
essential sources of error. On the one hand, the observer 
effect tells us that measurement modifies the examined 
system, limiting "the fineness of our powers of observation 
and the smallness of the accompanying disturbance". We 
notice this prod’s disruption as a measuring apparatus’s 
systematic error, particularly as nonzero decoherence if the 
observed system is manifestly quantum, closely related to the 
measurement problem. On the other hand, Heisenberg’s 
Uncertainty Principle, a law independent of the Schrödinger 
equation, claims a fundamental boundary to how well we 
can predict the values for a pair of complementary (wave-like) 
system variables. Note that the initial conditions of a 
transformation cannot be thoroughly specified. 

Even if they were, it would be impossible to anticipate the 
exact value of either of the conjugate properties (Fourier 
transforms of one another), ensuring a minimum threshold 
for the product of their dispersion. Then, Ozawa’s inequality 
aggregates the observer effect’s systematic error to the 
Uncertainty Principle’s statistical error. Fujikawa’s relation 
combines these errors to state that the product of the 
inaccuracy of one variable and the subsequent fluctuation in 
the other is nonzero, surpassing the modulus of the 
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indivisible dull spot, an uncertainty bubble, or a demarcated 
lattice cell. 

Mind that discreteness and finite resolution of spacetime are 
often mistakenly coupled. Discreteness is insufficient to 
justify an absolute minimum length because we could always 
find a lower and lower scale as a lattice spacing approaches 
zero (e.g., as a fractal), and vice versa, we can have a 
structural resolution limit without discreteness (e.g., in 
String Theory). So, to guarantee that natural extents are 
nonzero, a quantum theory of spacetime should state an 
additional assumption or deduce that a fuzzy or crisp 
granularity exists. This approach is the most common when 
research unites GR and QFT. String theory, Loop Quantum 
Gravity, Asymptotically Safe Gravity, and non-commutative 
geometries, nowadays the most renowned roads to QG, 
feature a minimal length scale. Ultimately, the physicality of 
a minimum observable extent weakens the notions of locality 
and coherence, a model for spacetime foam associates the 
minimal length scale with decoherence in terms of nonlocal 
interactions to explain quantum gravitational effects. 

Another issue is whether the minimum natural distance is 
the Planck length. We do not know if the Planck scale will 
play an essential role in a robust theory of QG or whether it 
will involve another minimal size, surely invariant. The 
Planck length stands for the diameter of the minor possible 
black hole, i.e., where a mass’ Compton wavelength and 
Schwarzschild radius coincide, or the minimum ball of 
spacetime accuracy. Consequently, GR and QFT interact 
intensely at the Planck scale to produce gravitation. Some 
physicists argue that putting the Planck length and the 
minimal length on the same level implies modifying SR; 
otherwise, "Planck-pixels" would violate Lorentz symmetry, 
and hence we could observe lengths contracted below the 
Planck supposed boundary from some inertial frame, and 
even electromagnetic waves squished boundlessly. 
Alternatively, we can turn to de Sitter Invariant Special 
Relativity to preserve observer-invariance. This theory 
exploits the constant length parameter that the de Sitter 
group naturally incorporates, which is the order of the 
Planck length. Regardless, rest-frame equivalence and a 
minimum size do not clash. We do not negate physics 
beyond the Planck scale, only that the indetermination 
would be so significant that thinking of the distance between 
two points or a spacetime topology no longer would make 
sense. 

What is the role of the Planck length, assuming that it is a 
universal minimum, in our (at least) four-dimensional 
universe? For something to exist, it must have a nonzero 
quantum value of surface area (discrete multiples of the 
Planck length squared) and volume (discrete multiples of the 
Planck length cubed). This rationale leads many physicists to 

commutator’s expectation value of the corresponding 
observable operators. The idea to bear in mind is that not 
only are dual properties dependent on each other, but 
neither can disappear, which supports the thesis that zero is 
alien. 

Zero, as currently utilized, might be unnecessary to construct 
most physics. Science should deal with zero as a beable 
projecting a property of quantitative character instead of an 
actual concrete value. From this standpoint, we can judge 
zero as a hole perfect in the abstraction of nothingness, the 
immaterial, the unfinished, the imminent, "the unknown" 
(Hindus’ "sunya"), "the unthinkable", an "inaccessible 
number", or rather an "undetermined possibility". However, 
this sheer non-measurable potential can have a nonzero 
probability of occurrence with implications in our view of 
the cosmos (see the probability mass distribution of the 
integers.) 

Extent 
The old discussion about whether nature is continuous or 
discrete takes us to the Quest for Fundamental Length in 
Modern Physics. On the one hand, the structure for a 
continuous fabric of spacetime and matter is liable to be 
inexhaustible, paving the way to zero and infinity but 
demanding limitless resources. On the other hand, neither 
philosophy nor test data seem to impede fundamental 
discreteness or a minimum physical extent. 

Descartes thought that "the nature of a body consists just in 
extension" (2:4) and "nothingness cannot have any 
extension" (2:18), albeit "a body can be divided indefinitely" 
(1:26). In Hume’s view, "no finite extension is infinitely 
divisible", a statement that embraces space, time, and 
abstractions (Of the Ideas of Space and Time, Book 1). In 
string theory, one cannot compress a circle below a minimal 
stretch given a fundamental string tension, which suggests 
that "smaller distances are not there". Smolin argues that 
nature cannot contract distances ad infinitum. Hossenfelder 
warns that there might not be a minimal length, just a 
minimal length scale, as a lower bound on the product of 
spatial and temporal extensions, for instance. 

Furthermore, a minimal length scale would not necessarily 
appear as a spatial resolution limit but could be noticeable at 
any layer. If this is the case, the recursive depth could be a 
predetermined value or limited to several possible values 
given by an inwards quantum number, much as the location 
of a particle confines itself to a countable number of spatial 
positions. IT leads to a similar judgment; "Whether the 
inevitable limit on precision is simply a limit on the number 
of bits that can be invoked in physics or is more complex 
and statistical is unclear". Whether absolute or relative, the 
deepest zoom-in would ultimately reach a discontinuity, an 
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conceive spacetime as a network of fixed quantum states of 
areas and volumes that evolves sequentially to rearrange 
connectivity. Such a network would fluctuate as a foam if 
arrayed in multiple tiny ever-changing regions. This model 
can explain how spacetime grows but not, for example, how 
time dilates or a process develops. The time dimension 
should preexist mated to the spatial regions, furnishing the 
network instances with a nonzero temporality to enable the 
relational cohabitation of its elements. Our universe indeed 
hosts beings with nonzero hypervolume. 

Moreover, the patch of spacetime occupied by every being in 
the universe should be large enough to allow local 
interaction; otherwise, the being would be incapable of 
yielding a minor action, staying unconnected from the 
presence of other bodies. This view points to the Planck 
length as the minimum distance (or equivalently, the Planck 
time as the minimum duration) needed to carry out a move, 
deformation, or modification to reality in general. Since the 

Planck constant 
34

6 10 . .N m s


 is the minimum force

integrable over a spacetime interval in one dimension, we 

can formulate the Uncertainty Principle as 2
st F

   , 

where
st

 and
F

 are the standard deviations from the

length-time interval and force means. So, the more precise 
the strength applied to a body, the less predictable its 
position from initial conditions. Vice versa, the narrower the 
interval for action, the stronger the push to generate a 
change, i.e., our endeavor will be in vain if the push span is 
too short. Even another way to express this idea is that, in 
one dimension, a transformation requires the capacity of a 
"natural" quantity of work .N m and impulse . .N s Therefore, 

a being is necessarily fourdimensional if it interacts with its 
environment in all three spatial dimensions. Zero-
dimensional elements are passive structural pieces to make 
up a being; hence their existence is only potential. 

ZERO INFORMATION 
On why zero has no information content and needs no 
repressentation. 

Gap 
Adopting a minimal length scale is also an old idea of 
quantum IT to provide a minimal discrete model of QG. A 
minimal length as a fundamental level of resolution implies a 
finite bandwidth and density of degrees of freedom for IT-
reconstructable physical fields, agreeing with the fact that 
"theories formulated on a differentiable spacetime manifold 
can be completely equivalent to lattice theories" even when 
the radius of curvature is minuscule. At the opposite end, 
spacetime tends to flatten on large scales. Since the strength 
of the correlations is inversely proportional to the distance, 

quantum entanglement phenomenology progressively 
evaporates as the universe expands, albeit not entirely. 
Quantum IT tells us that we gain detail in the observed 
object by descending enough to the appropriate layer of 
reality. The other way around, we embrace a sense of 
continuity by ascending sufficiently, i.e., scaling up to a 
suitable coarse grain of spacetime. Validation of the 
quantum-information linkage at both ends might mean that 
a natural information flow ranges between a minimum and 
maximum, and spacetime is a discrete computational 
framework handling neither zeroes nor infinities. 

The physicality of information has been commonplace in 
scientific research during the last century. In this vein, we 
claim that something with no quantummechanical degrees of 
freedom constitutes an information gap. Can an 
informational system encode, maintain, and decode data 
without physical support? Can information gathered, 
transformed, and disseminated in material media have an 
immaterial substratum? Can data be ethereal? Whatever that 
information is, it is "encoded in the state of a physical 
system". Besides, why would a quantum system keep matter 
or energy not serving an informational purpose? What good 
would an artificial interface between matter or energy and 
information be at a fundamental level? Can moving energy 
be anything other than information flow? "The particle 
passing by you is really a bit, or group of bits, moving along a 
set of interlinked logic units", or simply going through a 
medium. In this bidirectional relationship between physical 
process and information transformation, matter tells 
information how to organize, and information tells matter 
how to proceed. 

A simple but astonishing fact is that the unit of classical 
information is indivisible. The transformation of a qubit also 
gives us a classical binary digit as output. If the information 
we can obtain from a system is what we still ignore about its 
properties, we can also measure a system’s uncertainty 
reduction in bit units. Thus, information (and dually 
uncertainty) is a discrete physical quality impossible to cancel 
because the most elemental computational system provides 
us with one bit of information. Moreover, we cannot count 
the information that the hidden variables of a system 
transmit. If incompleteness is not the only source of 
uncertainty, what information can we quantify (and 
quantize)? Can we discern between classes of (nonzero) 
uncertainty? We present the following list of significant steps 
in this exertion. 

The Hartley function measures the difficulty of choosing 
among N alternatives as log N; we only find specificity, i.e., 
no complication at all, in single sets when there is no choice 
(N = 1), but genuine systems entail generality implemented 
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as degrees of freedom ( 2).N   Von Neumann entropy 

measures the extent to which the eigenstates of a quantum-
mechanical system interact with each other, and the entropy 
of entanglement calculates the correlation between a 
bipartition of the system. The reduced density matrix for the 
composite’s subsystems comprises a quantum hybrid state 
where partway separability preponderates. Maximum entropy 
corresponds to indistinguishable eigenstates of this matrix, 
so we cannot correctly speak of subsystems. In contrast, zero 
entropy signals a pure quantum state where the subsystems 
are uncorrelated, i.e., we have no system but the set of 
subsystems. Shannon’s Theory of Communication  meant a 
gigantic leap to defining the essential elements of a 
communication system. A message’s (expected) information 
content depends on how the codewords’ occurrence 
probabilities friction with each other; the information a 
message conveys cannot be nada, but log 2 at least. Zadeh’s 
fuzzy logic manages knowledge clearness via vague 
membership to sets or properties, showing that truth is not 
absolute. In summary, "nonspecificity", "confusion", 
"conflict", and "fuzziness" are the informational aspects that 
we can measure in bits and never disappear. 

At first sight, the resemblance between information entropy 
and thermodynamical entropy is unavoidable, but physicists 
found it opaque how these measures can engage with each 
other. In principle, the latter evaluates an object’s energy 
unable to do work. Thermal energy, under steady conditions, 
is fixed, untransferable, with no transformation capability, 
while outside the equilibrium, it moves as heat and can be 
productive. However, we cannot cool a body to absolute 
temperature zero or nullify its heat radiation. If the 
information is physical and the laws of thermodynamics rule 
information, thermal energy, heat, work, and temperature 
are comparable with information content, flow, 
communication, and PN radix (see following subsection), 
and zero is untouchable from either perspective. Let us recall 
a squad of masterworks that corroborate this 
angle. 

Leó Szilárd’s engine is a refinement of the famous Maxwell’s 
demon scenario. Szilárd’s demon exchanges information by 
mechanical work; as a corollary, no work implies no flux of 
information. Erwin Schrödinger’s negative entropy measures 
the statistical divergence from normality (a Gaussian signal), 
i.e., a capacity for entropy increase that parallels the
thermodynamic potential by which we can increase the
entropy of the system without changing its internal energy or
augmenting its volume. Since the entropy of an isolated
system spontaneously evolving cannot decrease, we can infer
that its negentropy (or free enthalpy) never runs out, so the
perfect normal distribution and the absolute chemical
equilibrium are inaccessible. Léon Brillouin states that for

information to be stored, processed, transmitted, and 
retrieved factually, it must obey the principles and laws of 
physics. More specifically, changing a bit value of a system at 

absolute temperature T requires at least 
2

k log 2
B

T  joules, 

where kB is the Boltzmann constant; no change in the 
properties of a system is possible without consuming energy. 

Later, Edwin T. Jaynes built a crucial bridge between 
statistical physics and IT (or equivalently between conserved 
average quantities and their structural symmetries), clarifying 
why thermodynamic and information entropies are 
equivalent, especially for the limiting case of a system at 
equilibrium. We can identify a system’s entropy with the 
microstate information lost when one observes it 
macroscopically; while this information can be associated 
with free energy, detailed organizational information stays as 
nonusable energy by the Second Law of Thermodynamics. 
This view agrees that a being balances one type of energy 
against the other throughout its existence, neither ever 
becoming zero. Similarly, from the perspective of IT, when 
we observe a system, we gather information about its global 
parameters such as temperature, pressure, and volume; mere 
observation evades a total lack of knowledge. Vice versa, if 
we narrow the central focus of attention, we gain 
information about a system’s internal structure, while 
holistic information gets imprecise. Thus, a being handles 
only imperfect information and struggles between the 
specific and the general. In particular, a living being is never 
wholly ignorant or aware of its environment. 

This argument is also why we can strictly discard neither the 
null nor the alternative hypothesis in statistics. The most we 
can do is to minimize presumptions about a system, such as 
configurational preconditions and restrictions. The 
maximum entropy principle, or minimal information 
principle, claims that "the probability distribution 
appropriate to a given state of information is one that 
maximizes entropy subject to the constraints imposed by the 
information given", a bet on the less informative a priori 
distribution possible and hence the most sensible of all "fair" 
random a priori distributions. This principle "affords a rule 
of inductive inference of the widest generality", a giant step 
toward formalizing Occam’s razor as a rule, for instance, to 
choose a prior probability distribution in Bayesian thinking. 
We always believe something before considering 
the evidence, i.e., presuming nada is impossible. Likewise, 
the posterior distribution is never thoroughly informative; 
we cannot cancel its information entropy. These are new 
signs that we live in a countable and orderly world. 

Information interchange, discussed above, preserves heat. 
However, what can we learn from a dissipative process? 
Information loss is a physical process intricately linked with 
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irreversibility or unpredictability, so a being must constantly 
acquire new information to postpone death. Landauer’s 
erasure principle tells that any phase-space compressing 
irreversible computation, such as erasing information from 
memory, "would result in a minimal nonzero amount of 
work converted into heat dumped into the environment and 
a corresponding rise in entropy". Then, a computational 
system continually creates entropy, and constant entropy 
means no computation takes place. 

Can a system have no entropy? Defining "entropy" as the 
logarithm of the number N of equally probable microstates 
of a system, its entropy vanishes when the system has only 
one microstate, i.e., one component (N = 1) with no freedom 
degrees, whence closed; it would not be a system per se, but 
just a beable, if any. Can a system be simplistic in full? 
Suppose we measure the complexity of a being by the length 
of the computer program in a predetermined formal 
programming language that produces such a system as 
output. In that case, the only possibility of possessing no 
complexity is no entropy, i.e., no information content. Thus, 
the representation of the void, i.e., no freedom and no 
complexity, is log 1. Moreover, speaking of entropy and 
complexity is nonsense when a system evaporates, which 
mathematically translates as the undefined logarithm of zero. 

We finish this subsection by commenting on a few 
paramount investigations that have consolidated the 
thermodynamics-information connection. Shannon’s Source 
Coding Theorem limits the reliability of data coding; an 
ordinary (noisy) channel cannot transfer error-free data if the 
codewords are finite in length, meaning that error is natural. 
Bell’s theorem unveils that locality is a condition vaguer than 
classically assumed; we had better regard phenomena as 
neither absolute local nor global. IT Evans’ fluctuation 
theorem generalizes the Second Law of Thermodynamics to 
microscopic systems, with a nonzero probability that their 
entropy might spontaneously decrease. Zeilinger’s principle 
of equivalence between mechanical and information 
quantization certifies that an elementary system bears just 
one bit of information because it can only give a definite 
result in one specific quantum query, so that measurement 
turns out to be an indivisible action as well! Sagawa and 
Ueda’s research extends the Second Law of Thermodynamics 
to explicitly incorporate the information, showing that 
physics must treat information, entropy, and energy equally. 
We can conclude that no reservoir of information, entropy, 
or energy can be categorically empty, and logically, 
incommensurable densities of any type are also unphysical. 
In this sense, honorable mention deserves Bekenstein’s 
upper bound on the entropy in a region of space, and the 
assertion that "there is no infinite amount of information in 
any finite space volume". 
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Economy 
The content of the previous subsection suggests that if a 
being’s properties and its statistical or thermodynamical 
microstates are bound, we can think of information as a 
series of data structures carved into the matter or generating 
radiation or sustaining the spacetime weave, as quantum-
mechanical degrees of freedom. Are these equiprobable? 
Would an evolutionary universe operate ubiquitous 
information, i.e., some of those forms of energy, kept in a 
linear mode? No, it would not, undoubtedly due to 
inefficiency. Without a thrifty sense, nature could not even 
carry out a single transformation in a finite spacetime 
interval. Considering this central premise, let us review how 
the logarithmic scale of a positional number system uses the 
digit zero. 

Place-value notation responds to the Principle of Position, 
which consists in giving a digit symbol "a value that depends 
not only on the member of the natural sequence it 
represents but also on the position it occupies with respect to 
the other symbols of the group." ("The Empty Column"). The 
contribution of the digit symbol to a numeral’s value is the 
product of the digit by the radix (or base) raised to the power 
of the digit’s place, e.g., 10 = 23 + 21 = 10102. In turn, the 
radix (that we here mark as a decimal subscript after the 
represented number) is the cardinality of the set of unique 
symbols PN uses to represent numerals. Standard PN 
includes the digit 0 in such a set. 

PN uses the radix r to encode and decode numbers using the 
base-r logarithm and the powers of r, respectively. Standard 
PN excludes the unary system (r = 1); we cannot correctly 
speak of a code in this case because it only uses the unit 
symbol to represent natural numbers. PN is plausibly 
universal because it agrees with the observation that ours is 
not only linear but also a logarithmic (or harmonic) world 
[19]. The minor numbers of the linear scale match the 
bulkiest ones of the logarithmic scale through the hyperbola 
so that products, quotients, powers, and roots translate into 
sums, differences, multiplications, and divisions. 

Note that the logarithmic scale is deceptive in the following 
respect. Consider the standard ternary numeral system, 
which provides the best "radix economy". Many people might 
associate offhand the unit interval with a concatenation of 
three segments corresponding each to a symbol 0, 1, and 2. 
However, this impression is incorrect and caused by our 
acquaintance with the decoded world. The encoded version 
of a radix-3 number shows that the unit is not divided into 
equal intervals but shrunk logarithmically, so 0 
dematerializes, and 1 occupies more space than 2. 
Specifically, when a position requires a nonzero, standard 
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ternary writes "1" if the fractional part of the logarithm is less 

than 
3

2log 2 3
In

In (63:1% of the unit space); otherwise, it 

writes "2" (occupying 
2 3

31 log 3 log ,2  36:9% of the unit

space). For instance, 
3

35 1022 starts with "1" because of 

3
35 1.296

3
 and

3
.296 log 2.

PN gives us the "characteristic" (the integer part) of the 
logarithm of a 
decoded number as the place of the most significant digit of 
the encoded number. We do not need to calculate the 
logarithm of the number with precision to extract its 
logarithm’s characteristic;

2 2 2 3 3 3
[log 11] [log 1011 ] 3, [log 58] [log 2011 ] 3     and 

[log 1327488]24 [log 400 0 ] 4.24 24g  In other words, the 

logarithm calculates the number of occurrences of the same 
factor (the radix) in repeated multiplication 

4 5
( . ., 24 1327488 24 ).e g   Digit 0 conveys a "skip me and go 

on" order in PN. Note that we cannot express the lone zero 
in standard PN because it has no place in the logarithmic 
scale, as the fact that zero does not have a unique
representation in scientific notation, an extension of 
standard PN, proves. 

The hassle of using the symbol 0 in PN is that the 
representation of a natural number is not bijective; for 
example, 7, 07, and 0007 are possible representations of the 
same number. This ambiguity can be a severe problem to 
qualify for a universal code. To avoid running ad hoc 
procedures that trim the leading zeroes, we can resort to the 
"bijective base-r numeration", which allows writing every 
natural number in uniquely one way using only the symbols 
{1, 2, · · ·, r}. Let us enlighten the strengths of this notation. 

Bijective notation requires a countable base ( 1)r  , so this 

number system intrinsically erases the capricious zero. For a 
given radix (that we here indicate as an underlined decimal 
subscript after the represented number), there are precisely r 
l bijective base-r numbers of length 1l  . An ordered list of

bijective base-r numbers is automatically in "shortlex" order,
i.e., the shortest first and lexicographical within each length.
For instance, the sequence of 12 bijective base-2 numbers

2
{22, 111, 112, 121, 122 , 211 , 212, 221, 222, 1111, 1112, 1121}

 from decimal 
1 3 2 1

6 2 2 2 17 1 2 1 2 2 2 1,to          is 

in shortlex order and has 
3

2 8 numbers of length 3. We

can accomplish number reversal for some calculations; e.g., 

the arithmetic mean of 
3

13 and 
3

31 is the number in the 

middle, namely 
3

22 . The representation cannot be more

compact, notably more efficient than standard PN, especially 
for the smaller radices 1r  . Bijective base-1 is not sui 

generis, meaning the no-code case can be a permissible 
natural continuation of a radix reduction process. 

These properties constitute an excellent advantage for 
processing natural numbers that our civilization affords to 
despise. We can add the minus sign or use a negative base 
for negative numerals. We can even combine the power of 
bijective notation with the efficiency for calculations of the 
signed-digit representation, say the "non-adjacent form" (also 
known as canonical signed digit representation) or the classic 
"balanced ternary" system. Let us focus on the latter, one of 
the best number systems regarding global computability. 

Balanced ternary only uses the symbols { , 0, };  for example, 

3 1 0 3 1 0
0 3 3 3 29 0 3 3 3 25.and             

This system proves that we can split any integer into a 
positive and a negative number, a sort of double "binary" 

system, e.g.,
3

25 28 3 [1001; 10]     or 

3
25 [0...01001; 0...010] .  To dodge the prepended zeroes 

problem of this notation, we can write the negative and 
positive components in bijective base-3 numeration, 

0 2 0

3
. ., 29 0 [1; 233] 1 30 1 3 2 3 3 3 ,e g              

3
30 0 0 [; 233] ,    and 

3
25 0 [231;3] 28 3        

2 1 0 0
2 3 3 3 1 3 3 3 .        With the convention that 

rationals delegate the "negative sign" to the numerator, we 

can write the rational 25
29

 as the pair of pairs of bijective

coordinates 
3

(231; 3 / 1; 233) and represent it as a unique

rectangle of nonzero size in a two dimensional grid 
precluding the origin. Thus, this "bijective balanced ternary" 
representation of rationals is a zero-free, nonzero-size, 
unambiguous, and efficient numeral system. 

Moreover, we can connect the basic code system 
denominated Canonical Representation for the nonzero 
natural numbers with bijective numeration to yield a zero-
free prime-based factorized representation of the natural and 
rational numbers. By the Fundamental Theorem of 
Arithmetic, we can think of P , the set of all prime numbers, 
as the atoms of  so that we can express every natural 

greater than one as a unique finite product of primes; for 

example, 
2 3 10

16857179136 541 7 3 2 .   The "arithmetic" of

this prime factorization consists of binary operations such as 
the product, greatest common divisor, and least common 
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multiple, whose outcome again admits a representation that 
depends on the operands’ prime factors. To banish zero, we 
can express the primality order and multiplicity as a pair of 
components in the bijective notation; for example, 

3

16857179136
{(3131, 1) (31, 1) (23, 1) (11, 2) (2, 3) (1, 31)}

29
 

1 1 1 2 3 10

100 10 9 4 2 1
. ., ,

n
i e p p p p p p where p


     is the n-th prime

number. 

ZERO COUNTABILITY 

On how the theory of sets struggles to endorse collections of 
nothing and why zero is axiomatically unnecessary 

Emptiness 
 ST is the branch of mathematics founded by Georg Cantor 
that analyzes groupings of objects relevant to number theory, 
relational algebra, combinatorics, formal semantics, and 
fuzzy logic. A set is a well-determined collection of things 
called the set’s elements or members, which can be, in turn, 
sets. The fiducial ST’s axiomatic system is allegedly Zermelo-
Fraenkel ST, along with the axiom of choice (ZFC). 

ST is the branch of mathematics founded by Georg Cantor 
that analyzes groupings of objects relevant to number theory, 
relational algebra, combinatorics, formal semantics, and 
fuzzy logic. A set is a well-determined collection of things 
called the set’s elements or members, which can be, in turn, 
sets. The fiducial ST’s axiomatic system is allegedly Zermelo-
Fraenkel ST, along with the axiom of choice (ZFC). 

Constructive theories such as Kripke-Platek’s include an 
Axiom of Empty Set, stating that there exists one set with no 
members and cardinality nil called "empty" or "null". 
Explicitly assume the empty set axiom. These theories usually 
formulate this axiom as ( ),S y y S     where the 

uniqueness of { } follows from the Axiom of Extensionality. 
Still, most studied and used axiom systems do not include 
the Axiom of Empty Set (e.g., ZFC ST and its variants and 
extensions) but allow deriving it, for instance, through the 
Axiom of Specification, which states that given any set S and 
a logical predicate ( ),p x  the elements x ∈  S that make 

( )p x  valid form a set. Assuming that S and x exist and the 

Principle of Identity, a property impossible to fulfill, 
. ., ( ) ( ) ,i e p x x S or p x x x x x      supposedly generates { 

{ | } ( { | })x S x S or x S x S   

To begin with, it is disputable that the paradoxical
expression is equivalent to { }. 
However, the real problem is that since the mathematical
definition of a set is extensional, all that matters are the 
elements, so considering a void content is counterintuitive. 
Indeed, { } does not mirror the real world, where we cannot
encounter empty collections, and it is neither apparent how 
it can admit relations of any type. Does this mathematical 
object exist? Remarkably, Dedekind excluded the empty set 
from his initial essay because it was unnecessary, and the 

same Zermelo called it "improper". According to 
Locke’s thought ("Substance and identity"), "we 
should not uncritically accept the currently standard 
view that zero denotes the empty set, becasue it is far 
from clear that the notion of such a set really makes sense. 
[...] What is unclear is how there can be, uniquely amongst 
sets, a set which has no members. We cannot conjure 
such an entity into existence by mere stipulation [...]. So, 
[...] the reason why the property of being zero cannot be 
possessed by any object or plurality of objects is that there 
is no such number as zero and consequently no such 
property as the property of being zero." 

Thus, although the null set is considered factual 
in practically all axiomatic systems of ST, its existence 
and usefulness are suspicious. Suppose the objective 
of an axiomatic system is to formalize the essential 
concept of a hereditary well founded exclusive set 
("What we are describing"). In that case, one can replace 
(Axiom of Infinity) 

..., {{{{}}, {}}, {{}}, {}}, {{{}}, {}}, {{}}, {}

with the expression {1},{1, {1}}, {1,{1, {1}}}, {1, {1, {1, {1}}}}, ...

The former deems { } a set, i.e., presumes that "nothing" is a 
countable 

thing, and adopts von Neumann’s interpretation that every 
set has as elements the sets with ordinality lesser than it so 
that ordinality and cardinality coincide. The latter eludes the 
empty set and is a Zermelo-wise interpretation where every 
set has two elements, i.e., 1 and the previous set. In this case, 
the ordinality of a set corresponds to the sum of ones or the 
nesting depth ascribed to the last item, 

. ., {1, {1, {1, {1}}}} 4.i e Ord   This account weds arithmetic to 
set theory more straightforwardly and is a neater semantic of 
individuating the natural numbers rooted in thought and 
language. 

Moreover, all properties of sets are trivially valid for the 
empty set; for instance, the Axiom of Union and the Schema 
of Replacement claim nothing substantive. Valuable 
theorems refer without exception to nonempty sets, and 
even many axioms and theorems of ZFC specifically exclude 
the empty set, e.g., the Axiom of Regularity and the Axiom 
of Choice. What binary relation well-orders the empty set? 
None. What is the service of the intersection or Cartesian 
product of a set with the null class? None. 

Users of the ST inherently assume the convenience of 
counting on, for example, a crate, bag, or trashcan vacated. 
Nevertheless, the point is that ST refers to "the" empty set. 
Thus, finding two empty baskets is inconvenient, a situation 
against the theory. What is the effectiveness of a lone bin 
doomed forever to hold nothing? There are infinitely many 
sets of any cardinality except for the empty set. The only set 
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from which we cannot remove an element and the only one 
that is a (strict) subset of any set except itself! If the 
definition of subset requires elements in common, the 
statement { } ⊂ S is false, whereas if it requires that no 
elements in the contained set are out of the container, the 
empty set is a subset of itself. Moreso, the empty set implies 
"vacuously true" statements that give rise to paradoxes, e.g., 
∀ x { } →  x (anything is provable). Worse yet, it is a 
topological self-contradiction; despite representing a hole, 
i.e., a no-point, the empty set, closed and open
simultaneously, has the property of "compactness" (neither
punctures nor missing endpoints). Given these facts, we
daresay that the empty set is useless, weird, or even an
encumbrance.

Handling only populated sets means wriggling away from this 
exceptionality and gibberish. Thus, a set proved to be empty 
should formally disappear, an approach that agrees with 
Hausdorff’s view when he wrote that A = {} means that A 
vanishes. If we needed intersections of sets even when there 

is no intersection, we could take such an intersection as S ∧

¬ S, again a dull vanishing expression. We can handle "copies 
of the empty set" as beables to cope with collections possibly 
deprived of content. For instance, consider a handful of 

marbles distributed in bags A and B, with A ⊂ B. How 

many of them are in B − A? We must take A as a beable, a 
not-being yet but a potential set. If ,B A B  A is a set; 

otherwise, A is empty, so we rule it out as a set, and our new 
universe is exclusively B. An empty beable is equivalent to 
handling possibly a future set. For example, one may prefer 
to keep a bank account where no money is left as a beable 
(i.e., a possibility) that sooner or later will be activated again 
as a set. 

Futility 
What is the role of zero in the essential number sets? 
Although the standard ISO-80000 considers zero a natural 
number, whether it is the origin of the natural numbers 
hinges on how we prefer to define a natural number, so we 
find reasons in the literature to include zero as much as to 
exclude it. According to our description, we bet on the latter 
because zero is exceptional, tallies nothing in nature, and has 
no informational value. Moreover, given that the empty set is 
not a well-determined collection, zero is neither ordinal nor 
cardinal. 

One more argument is the correspondence between zero and 
one. Although mathematicians have agreed not to list the 
multiplicative unit as a prime number for the last century, 
the additive unit has not met the same fate. On the one 
hand, a prime number has exactly two distinct divisors, 
namely the unit and itself, whereas a composite number has 
more than two distinct divisors; 1 is neither prime nor 
composite. On the other hand, the primes define a 
logarithmic scale given by pn/(n+1), where n is a counting 

number, and p1 = 2 is the first prime. Since the zeroth prime 

p0 = 1 does not exist, neither should the zeroth counting 
number. Moreso, 0 ≡ log 1 should be the origin of the 
encoded naturals, much as 1 ≡ p1/2 is the origin of the 
encoded primes. To boot, 1 ∈ P would make many 
statements about primality verbose, some even invalid, 
bringing about the same difficulties zero causes to the 
natural numbers. 

Axiomatically, we can define {0}  employing the 

Peano axioms without reference to zero; every nonzero 

natural number has a unique successor :S  sending 

each natural number to the next one, 1 is the natural unit 
and not the successor of any natural number, and the rest of 
the algebraic properties of the naturals utilize the method of 
induction. The addition of the unit defines precisely the 
successor, i.e., a + 1 = S (a), and then a + S (b) = S (a + b) for 

all , .a b The multiplication by the unit defines the 

identity element a·1 = a and then a · S (b) = a · b + a. The 
order relation and Euclidean division state a > b if and only 

if a b  and there are ,q r   such that a = q · b+r with b = 

r or b > r (recursively). Note that ( )n S n n    holds 

because of S (n) = 1 · n + 1, and if 1, 1n n   is due to S (n) 

= n · 1 + 1. For example, 8 is greater than all its predecessors 
since 8 = 1 · 7 + 1, 8 = 1 · 6 + 2 (6 = 2 · 2 + 2), 8 = 1 · 5 + 3 
(5 = 1 · 3 + 2 and 3 = S (2)), 8 = 1 · 4 + 4, 8 = 2 · 3 + 2, 8 = 3 
· 2 + 2, and 8 = 7 · 1 + 1. Likewise, 8 ≯ 8, 8 ≯ 9, 8 ≯ 10, et 
cetera because no q satisfies the conditions of our definition. 
The nonzero natural numbers also satisfy the properties of

closure ( { , } , , )a b a b a b    commutativity 

( { , } ,a b  ),a b b a and a b a       associativity 

( { , , } , ( )a b c a b   

( ) ( ) ( ) ),a b c and a b c a b c    and distributivity of 

multiplication over addition ( { , , } , ( )a b c a b c   

( ) ( ))a b a c  . 

We can extend the naturals with the indeterminate element 

 so that { }.   This new element is a beable, not a 

number, that closes the natural line sort of projectively (see 
the yellow directed circle of Figure 1), allowing to extend the 
arithmetic of the naturals by .a and a   The 

properties of commutativity, associativity, and distributivity 

remain unaltered. However,  cannot retain the order 

relation because neither a nor a  holds, given .a

For example, 2 ≯ because 2 .q r   Likewise,  ≯ 2 

because 2 2r r      but , 2and q   

but 2 ≯ . Therefore, we cannot identify  with ∞, let 

alone with 0. The indeterminate element is simply an 
inaccessible natural. 
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Well, zero is not critical for . What about the integers? 

The eagerness to unite the negative and positive numbers 
was the chief reason to include zero, making Z democratic so 
that any point can be an objective reference frame or neutral 
coding source. Zero, "based on the dichotomy of source-
evolution (origin and derivate), has much to do with zero as 
a number between negative and positive numbers" [5]. Here, 
evolution is progression implemented as a recursive 
composition so that zero is the generator of positive and 
negative integers; 

1 2(0) ( (0)) ( 2) ( 1)i iS S S S i S i i

   

         and (0)iS i



 

for all i are the successor and predecessor operators. 

These operators are vital, but zero is unnecessary to generate 
induction. 

Above everything, additive groups include zero to bridge the 
requirement to assign to each element in the group x

another element y such that x + y = 0. However, we object 
that a number canceling its opposite is a vacuous expression; 
x + y vanishes. We can equivalently write it as y x 

showing that zero is superfluous and exceptional because it is 
the only integer with no inverse. On the contrary, if we 
accept that zero opposes itself, we might as well say that it 
disobeys the axiom of additive inversion. Besides, the sum 
0 x x  and the multiplication 0 | | 0x   have as much sense 

as | | .x and x        

The glamour of zero fools us deviating our attention. The 
power of fields, rings, and algebras primarily resides in the 
multiplicative group, focusing on invertible members, i.e., all 
nonzero elements. If needed, a field can represent the void 
by adding the multiplicative unit and its opposite. Consider 
the alternative definition of a ring without zero in 
mathematics as a set equipped with the unary operation of 
inversion, the binary operations of addition and 
multiplication, and two constants, +1 and −1, so that it 
holds ( 1)x x    and the expression 1 ( 1) 1 1    vanishes. 

We can embrace the Peano axioms for the definition of the 
negative and positive integers, except that the initial case in 
induction proofs requires using both units as generators 

instead of zero, i.e., ( 1) 1, ( ( 1)) 1,n nS n S n

 

      and

( 1) ( 1)nS n



    for all ,n while ( 1)S



 and (1)S



vanish. 
Consequently, zero is axiomatically unnecessary for the 
integers. 

Although the integers do not form a field, we can imagine a 
sort of "integer projective line" that splits the 
indetermination  into 0 and ∞; the integer line together 
with an idealized point at infinity, an antipodal point of zero 
that connects to both ends of , traces a closed loop. In this 
set of extended integers, zero enables a germinal version of 
the principle of general invariance, by which fundamental 
physical laws must be coordinate-independent, 
converting 
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zero into a factotum, an almighty angle. Nonetheless, this 
covariance reinforces the need for an arbitrary origin of 
coordinates and not the consideration of zero as an integer. 

ZERO CONSISTENCY 
On the zero duality; why zero is not but can be. 

Singularity 
Within , the polarity between 0 and ∞ is even more 

evident. If infinity is outside the rationals, so should zero, its 
reciprocal counterpart. Since zero is as troublesome as 
infinity, the rationals should treat them on par with each 
other as the embodiment of abstract extreme magnitudes. 
However, note that "arbitrarily little" (the smallest 
computable rational) is not the same as "inconceivably little", 
which is a metaphysical claim about the nothingness 
opposed to "unboundedly large" and admitting no regular 
implementation. 

The exceptionality of zero stands out in a rational context 
more than in  because it can be a fraction’s numerator, 
not a fraction’s denominator. A way to sort out this algebraic 
disruption is the convention that a rational expression will 
be assumed to be vacuous if a choice of variables involves a 
zero denominator. An alternative solution is seeking an 
interpretation of "division by zero", but this approach also 
assumes that zero demands differentiated handling. Any 
strategy to give zero a global meaning is in vain; "there is no 
uniformly satisfactory solution". The Solomonic decision of 
banning the expression x/0 only if 0x   does not work 

because the undefined forms 0/0 in arithmetic and 00 in 
calculus remain. Trying to figure out a meaning for these 
expressions leads again to absurdity. ' s completions (e.g., 

R) and their extensions inherit these "irregularities" to the
point that they are handled by computer programming
languages and software libraries differently!

Inconsistencies disappear if we concede that zero is not a 
number of a linear scale, hence neither the numerator nor 
the denominator of a fraction. The nonzero rational 

numbers {0}  form a field because an arithmetic 

expression of rational variables that evaluates to zero 
vanishes. Moreover, we have explained that thinking of a 
rational number as a pair of interchangeable components is 
an almighty perspective, inhibited owing to our obsession 
with zero. Despite this potential, lightness stands a blot on 
the reputation of the rationals because they are negligible 
compared in number with the irrationals, not to mention 
compared with the real transcendental numbers. Specifically, 

 has a null Hausdorff dimension in the unit segment of 

the reals, although it is unclear why this measure is a 
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preference criterium to choose among number sets; for 
instance, the rationals have Minkowski dimension one in the 
unit segment of the reals. 

How come is the heaviness of the -line useful for 
calculability? The reals are so unthinkably thick that 
divisibility, contraction, and expansion become pointless. 
Quite the opposite, we claim that countability is a condition 
of non-rigid transformations, e.g., deformations, where "the 
real stuff" renders no room to contract or dilate. So, we find 
no solid empirical-argumentative basis to sustain this 
enthusiasm for the reals and wonder who abhors the vacuum 
between rational numbers, nature or human beings? 
Nevertheless, modern mathematics trusts the impeccable 
reals as though they were an elixir to cure almost all the flaws 
of "minor" incomplete number sets with cardinality infinitely 
countable; R "takes on many of the aspects of a religion" and 
we, physicists, profess this religion. 

In the complex setting, the situation gets worse. One of the 
most severe problems in  is that the polar angle for the 
origin is undefined; new kinds of indeterminate and 
undefined forms appear, their values varying depending on 
the approaching direction to zero. For instance, consider the 
function ( )f z z  (z’s conjugate) at the origin; along the 

imaginary axis, ( )f z  behaves like the function z  with 

derivative limit ( ( ) (0)) / 1,f z f z   whereas along the real 

axis, f (z) equals z with derivative limit 1. z  is what the 
theory of functions of a complex variable denominates a 
non-holomorphic (non-analytic) function around 0, where it 
does not behave regularly. More generally, complex analysis 

studies those points s where lim ( ) lim 1 ( )
z s z s

f z or f z
 

is 

undefined. If neither limit exists, s is an essential singularity 
for f and 1/f; for example, the origin is an essential 

singularity for 
1 1

, , ,
z z z

e e z and their reciprocal functions. To 

resolve a singularity of any type, we must approach it from 
different directions through a vanishing sequence of 
distances | | .z s  

Animosity towards zero increases with the complexity of the 
setting. In the quaternions H and octonions , we find new 

undefined expressions related to zero; for example, the n-th 
root of quaternions q with negative [ ]q  and vanishing 

[ ]qA , such as 1 , is undefined . Furthermore, a 

quaternionic and octonionic universe would be non-
commutative, i.e., ,p q H   such that pq qp does not 

vanish. Likewise, an octonionic cosmos would not be even 
associative, i.e., , ,p q r  such that ( ) ( )pq r p qr . 

Zero does not fit the relevant number sets , , , ,H and O . 

It constitutes a pervasive algebraic anomaly whose 
intractability cannot be solved, an "oddball", and an 
"obnoxious bugger in a lot of ways". Zero does not exist per 
se, but it is a linear scale’s hole, i.e., a universal singularity we 
must handle as a limiting value. However, as a logarithmic 
scale’s fixed mark, zero can be. 

Beability 
Our proposal denies zero as an actual number of a linear 
scale and takes it as a potential number. Consider the 
following probability mass function for a random variable 

Z 

2

1
:

(2 )Pr ( )
1

: 1 (2)
2

Z
ZZ

else 





 


(1) 
where ζ (2) is the value of the Riemann zeta function at 2. It 
is well-defined because the probabilities sum to 1 

1

2 2

1

(2 ) (2 ) (2) 4
z z

Z Z 

 

 

  

  

Since the expected value of Z is undefined 

1

2 2
1

1
ˆ ˆ ˆ( ) ( ) ( )

4
z z

Z Z
E Z E E

Z Z

 


  

 
 

           
 
 

picking an integer has no bias. Besides, it complies with the 
"minimal information principle. Thus, this distribution of 
probabilities is a candidate for the integers’ probability mass 
function in nature. The case "else" is the beable not-a-
number, e.g., a null value of a database’s field, proving that 
zero can contribute to the entropy of the integers in the 
background. What realm zero breaths in? 

We have not mentioned the functions exp (0) or 0! so far 
because the role that number zero plays in them differs from 
that in expressions involving sums, differences, products, 
and quotients, where zero is presumably at the center of a 
linear scale. In contrast, power exponents belong to the 
logarithmic scale, and the power of zero precisely marks the 
origin of this encoded algebraic space. However, zero usage is 
again superfluous because oof exp (log (1)) = (log (1))! = 1; 
the unit is the invariant "empty product" nailed by the null 
power, i.e., the number of ways to choose among a single 
item or the permutations of no elements. Indeed, "zero is the 
logarithm of one" indicates that zero is a pointer to a being’s 
property data. For example, the azimuthal and magnetic 
quantum numbers in atomic physics are exponents, and the 
null values indicate the arbitrary axes chosen for the 
spherical coordinates. Distinguishing between the linear and 
logarithmic scales is essential to comprehending Lie groups 
and algebras, the Laplace transform, and, generally, the 
exponential map. 

The equation 0
x

e   has a solution in no composition 
algebra, meaning that division algebras and split algebras 
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dismiss null rotations. In general, zero is inaccessible to a Lie 

group in Lie theory. For instance, 


 (positive real

numbers)  (nonzero complex numbers), and
4

( )GL  with

inverse (set of n × n matrices with nonzero determinant) are 
the Lie groups of the Lie algebras of , , ( , ).and nM  

Thus, the model of continuous symmetries provided by a Lie 
group excludes the origin, the fixed point that observes or 
realizes the transformation. Zero can live in a Lie algebra 
only. 

The exponential map taking a Lie algebra into the Lie group 
admits a geometrical interpretation. A pseudo-Riemannian 
manifold is a differentiable -based space, locally similar 
enough to a vector space to do (differential) calculus, with a 
metric that is everywhere nondegenerate (i.e., invertible, with 
a nonzero determinant), allowing us to define an exponential 
map between the tangent space through each point and the 
manifold. The exponential map warps (is a diffeomorphism 
of) the tangent space in the neighborhood of a base point, 
where the tangent space linearizes the manifold. The 
exponential maps of the one- (straight line), two- (plane), and 
three-dimensional Euclidean spaces are the unit 1-sphere 
(circle), 2-sphere (the standard one), and 3-sphere 
(quaternion). In general, instances of the n-sphere are circle 
group members, which bans zero. The origin’s exile is 
particularly conspicuous in the corresponding topological 
versions, i.e., the 1-torus, the spherical shell, and the 2-torus. 

Similarly, the Laplace transform 
0

{ ( )}( ) ( ) stf t s f t e dt


 
converts a real variable’s function to a complex one through 
an integral on the positive reals (over the interval (0, ∞)) that 
involves the exponential function. The transform of an 
elementary stimulus at the source with non-negative delay τ 

is the exponential map { ( )}( ) ;
s

t s e


  


  the universality 
of the exponential map is likely the outcome of a series of 
primal impulses. Specifically, trivial and constant uniformity 

0
( { ( )}( ) 1)

s
t s e    is unphysical in a universe like ours

that rejects stark immediacy and unfailingly entails delays (τ 
> 0). 

Moreover, a Laplace transform decodes the information of a 
sinusoidal wave (periodic movement) with friction or gain 
(exponential decay or growth) as a fractional response 

2
2( { ( ) ( )}( ) (( ) ),

at
e Sin t u t s s       where u(t) is the unit 

, ). 

, 0,  

Heaviside Step Function and  Zero negation, i.e., 

assuming implies that systems always wave and 
friction to some degree and consequently exhibit nonlinear 
dynamics without exception (see next section). The poles of a 
Laplace transform determine a base of nonzero waveform 
generators that can reproduce the dynamics of practically all 
linear systems, e.g., linear time-invariant systems, and many 
nonlinear organic systems. For instance, we conjecture that 
nature decodes steady ramp impulses (like the rectified linear 
activation function in neural networks) as the inverse-square 
law followed by the effects of gravitational, electric, and 

16363

radiation phenomena given by the probability mass function 

1, i.e., 2

1 1
{ ( )}( ) .

2 2
tu t s

s
 

ZERO COMPUTABILITY 
On how to get around the inconsistency inherent in zero to 
achieve full computability through rationality and the 
concept of LFT. 

Rationality 
We have seen that various sorts of uncertainty dwell in 
nature’s core. Specifically, we have reviewed undefined and 
indeterminate forms, noticing that the cases of intractability 
involving zero increase with the complexity of the setting, to 
wit, , , , , , .and  We have questioned the benefit of 
dealing with the continuum because it is an illusory 
description of nature, i.e., non-constructible and 
uncomputable by definition. Indeed, "mathematical 
determinism, especially if it is taken to imply (longtime) 
computability, is an idealization never achievable in the 
empirical world of actual modelling, measurements, and 
computations". 

reflects the human’s naïve impression that nature is 
continuous and reliable but fails to cope with its inherent 
discontinuity, imprecision, undefinition, and undecidability. 
Gödel’s results usher our axiomatic systems to 
incompleteness or inconsistency, and approximation 
procedures and methods rule measurement and calculus. 
Reality is defective, total accuracy is unattainable, and 
imperfection is inevitable. It is paradoxical, for instance, to 
model quantum nonlocality as emerging from the unphysical 

exactness of 
3

, the standard three-dimensional Euclidean 

space, 
3

E . 

If we disavow the reals, should we not reject the complex 
setting too? Yes, we must because no algorithm can decide 

whether a polynomial ,
g

z a where g  and a belongs to
a field, is irreducible or can be reduced to factors of a lower 
degree. Moreover, according to Abel-Ruffini’s theorem, no 
algorithm can write the complex roots of some polynomials 
of degree five or higher in radicals, so we cannot provide a 
general representation of the complex numbers in terms of 
radicals. Furthermore, we cannot expand those polynomial 
roots expressed in radicals in finite time; a factorization 
algorithm generally finds only approximate solutions to 
  in  form .z a

Luckily we can resort to algebraic numbers. A is a countable 
and computable set, whence definable and arithmetical 
except at zero, that forms a field because the sum, difference, 
product, and quotient (presuming that the denominator is 
nonzero) of two algebraic numbers are also algebraic. 
Besides, A is algebraically closed because every root of a 
polynomial equation whose coefficients are algebraic 
numbers is algebraic, which we can consider the natural 
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implementation of the Fundamental Theorem of Algebra. 
With this resume, an algebraic number represented as a 
"polyrational", i.e., a sequence of nonzero rational numbers, 
seems to match more realistically an observable’s 
measurement requirements than a complex number. 

Before adopting A as the leading candidate for the universal 
number framework, we must consider its effectiveness. An 
algebraic number is a root of a nonzero (non-trivial) 
univariate (involving one indeterminate or variable) 
polynomial with rational coefficients (irreducible fractions). 
This definition comes with a pair of caveats. 

First, the representation is not unique. For example, 
consider the univariate polynomials 

8 4 31 1 7

12 30 2
z z z z  

2
6 7

2
6 15

z z
z

z
  

3 2
7

2 7
6 15

z z
z   

7 3 21 1 7

12 30 2
z z z                                                          

(2) 
They are somewhat equivalent. However, suppose we require 
the polynomial’s highest degree (leading) coefficient to be 
the positive unit, i.e., a monic polynomial, and the lowest 
degree (trailing) constant to be nonzero. In that case, the 
only valid representation is the last one. Such a unique 
irreducible representation is the "minimal" polynomial, and 
the set of minimal polynomials forms a ring. Because the 
trailing constant of a minimal polynomial is a nonzero 

rational, neither rational numbers nor functions ,
n

z  with n 

,n belong to that ring. Accordingly, zero cannot be a root 

of a minimal polynomial and is not algebraic. Since a 
rational power of a nonzero algebraic number is a nonzero 
algebraic, and the sum, difference, product, and quotient of 
two nonzero algebraic numbers are again a nonzero 
algebraic, {0}A A  is a field algebraically closed without 
exceptions! Note that expressions z z , such as 1−1 or 
2 (3 1 2) ,z z z     vanish and do not constitute a genuine 
arithmetic difference. 

We can set a zero-free unambiguous codification of a 
minimal polynomial using the bijective notation (for 
instance, the minimal polynomial (2) in signed bijective 
radix-3 notation is the "canonical" expression. 

3
{21 (1 33)3 (1 / 233)2 (21 / 2)}  

with roots 

1.19136z  

0.26902 1.15872z i 

1.07653 0.52796z i 

0.74986 0.93908z i  

A computable representation of this set of algebraic numbers 
is precisely its minimal polynomial in canonical form. 

Conversely, a minimal polynomial exists for all z A  . The 

degrees of an algebraic number and its minimal polynomial 
coincide; for example, degree 0 does not exist, rational roots 

have degree 1 (e.g., 
2

7 2), 1z z z   and the golden ratio 

have degree 2, and the polynomial (2) and any of its seven 
roots have degree 7. Note that we can distinguish between 
rational numbers as such and rational roots of polynomials. 

For example, whereas the code of the rational number 7
2 is 

3
{(21 / 2)} , 7

2 in 
3

{1 (21 / 2)} denotes the algebraic value

that annuls 7 .2z  We can use both in an algebraic 

expression, e.g., 7 7 .2 2z 

Another caveat is that if we want the minimal polynomial to 
be "identically zero", the expansion of a polynomial root in 
PN does not terminate, i.e., it is an endless calculation. To 
construct an algebraic number explicitly, we must relax the 
definition of "root" so that nullifying a minimal polynomial 
is calculable in A despite being undecidable in . Thus, a 

root is a value z A  that makes its minimal polynomial P (z) 

vanish identically (e.g., 4
5z  is a root of 

2 16
25z  or 

approximately as an element of the sequence converging 
asymptotically to 

( )| 0
lim ,

p z
z


where the pair of vertical bars 

indicates modulus (e.g., 1.19136z   is an approximate root 

of (2), and 1.19135785807z    is even a "better" solution). 

The inaccuracy of A  is intrinsic to natural phenomena. 

Although 

A

 has Lebesgue ( -based Euclidean) measure nil 
as a subset of , the property "algebraic" occupies nearly all 
the possibilities of the complex plane; the algebraic numbers 
are dense in the complex numbers, and these are algebraic 
numbers "almost everywhere" (or "almost surely"). Then, 
what is the use of complex numbers that are not algebraic? 

Transcendental numbers, i.e., those that belong to ,A

such as 0, ln (1 2 ), and 3  , are de facto virtual and 

indefinite entities, as inaccessible as ∞ because their "real" 
value is unthinkably far away. 

These properties point to the nonzero algebraic numbers in 
canonical notation, with limiting values 0 and ∞, as a solid 
basis for building a universal information processing and 
propagation system. We can alternatively turn to the 
mathematical structures that allow division by zero, such as 
the -line and the -plane extended with "infinite points". 

For instance, consider { }   implemented as a vast 

circle containing a pair of dual values, namely 0 and ∞, so 
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that every element has a reciprocal, i.e., 1
x is a "total 

function". There is no order relation because infinity is de 
facto  , which does not admit comparison with the rest of 
the elements. We have two additive constants because r + 0 = 
r and r+∞ = ∞, 00 is so undefined as ∞∞ or ∞0, and new 
indefinite expressions appear, such as ∞ + ∞, ∞ − ∞, 0 · ∞, ∞ 
· 0, and ∞/∞. The topology is that of a circle, but the
arithmetic of intervals, especially those involving 0 or ∞, is
inarticulate and still inconsistent (e.g., what is the

complement to ?). Likewise, we must redefine critical
concepts like "neighborhood" and "limit" before doing

calculus in . All in all, 0 and ∞ cause difficulties as real or
complex numbers without a benefit.

Therefore, extended algebraic objects like  and  are 
inspiring but do not satisfy the field axioms; 0 and ∞ are 
antipodal points that lead to complicated arithmetic and 
rambling calculus. If dealing with a line at infinity is a 
requirement, then the proper scenario is projective geometry, 
where everything works with lines of sight, planes of reality, 
and planes of representation instead of distances. This 
geometry is an actual fraction-oriented framework where 
coordinates have the consideration of ratios. If 
"observational perspective", e.g., incidence, is not an issue or 
we need to preserve sizes or angles, an algebraic setting like 

 or A  is the fitting choice. 

Renouncing the points 0 and ∞  as numbers from the 

beginning, we assume that zero and infinity are unreal, 
limiting rather than genuine curvature values, i.e., 
predefined singularities. This solution achieves a consistent, 
rational geometry of Euclidean spaces, comparable with their 
dual non-metrical projective spaces. However, it does not 
impede using 0 and ∞ as the limit of every sequence of 
rational numbers whose absolute values are unboundedly 
decreasing and increasing, respectively. Moreover, this 
approach successfully extends a rational function, i.e., the 
ratio of two minimal polynomials, to a "continuous function" 

from 

A

to itself. In the following section, we analyze 
"conformality", a unique property of this smooth algebraic 
action in any dimension. 

A last clarification before going on. How is Euclidean space 
if it is not a "real" space? A real-algebraic number is a 
minimal polynomial’s root with an identically vanishing 
imaginary component (e.g., the real root of the polynomial 
2). The set of real-algebraic numbers forms a field, and so do 
the "nonzero real-algebraic numbers". We claim that precisely 
this set is the one-dimensional Euclidean space E. Note that 

A

 differs from E2; while the former has a complex structure 
and only exiles the origin, the latter has a less elaborated 

structure, namely E×E, where "×" is the "direct product", 
banishing all the points on the plane’s axes. This result 
agrees with experiments designed to falsify quantum 
mechanics based on splitting the concerned wave function 
into their real and imaginary parts; formulating quantum 
mechanics in terms of complex numbers is necessary, and 
complex translates into algebraic. In general, the coordinates 
of a point in n-dimensional Euclidean space En are all 
nonzero, and the field operations of this compartmentalized 
space are the coordinate-wise field operations of the nonzero 
real-algebraic numbers. 

LFT 
We have expounded why zero hinders progress in algebra 
and calculus. Instead, everything works fine if we concede 
mathematical uncertainty, i.e., managing zero as an implicit 
limit of a sequence of evaporating values instead of a 
number. For instance, we explained in the previous section 

that a number that belongs to A   inserted in its minimal 

polynomial provides a mere approximation to zero. Can we 
move this way to treat zero to other algebraic (computable) 
objects? Yes, we can. 

A function is "univariate rational" if and only if reduced to 

the lowest terms is in form 
( )

( )
P z

Q z , i.e., a quotient of two 

polynomials with coefficients taken in a field F and values of 
the variable taken in a field G ⊃ F, where the greatest 
common divisor of P (z) and Q (z) (after a reduction process) 
is a constant. There cannot be indeterminate forms because 
Q (z) cannot be the null function, and zero is not a 
univariate rational function because P (z) cannot be either 
the null function. 

A univariate rational function results from the sum, 
difference, product, or quotient of two rational functions of 
the same nonzero algebraic variable whose numerator and 

denominator are minimal polynomials over a subfield o 

A

. 
The zeroes and poles of a rational function and its reciprocal 

are rationals or limiting values in 

A

, like 0 and ∞. Thus, the 

set of univariate rational functions taking values in

A

 forms 
the closed field of fractions of the ring of minimal 

polynomials over the elements of  or 

A

 and is a basis for 

generating the field of meromorphic functions over 

A

. 

An LFT is a univariate rational function whose numerator 
and denominator are linear (degree 1) polynomials. An LFT 

(with coefficients) over a subfield of 

A

 taking values in 

A

 
adjoining 0 and ∞ as projective opposite limiting values to 
eliminate mapping discontinuities is a Möbius 
transformation. The Möbius group is the automorphism 
group on the "algebraic projective line", of which the 
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Riemann sphere is a model. Since the composition of two 
Möbius transformations is a Möbius transformation, we can 
produce the effect of an ongoing smooth process over this 
projective line by conducting successive Möbius maps. 

Given coefficients { , , , } ,a b c d A where ad − bc is nonzero, 

the rational function of one variable z A  

( )

bza az baf z
c cz ddz

c

 
  

     
 

                                     

(3) 
represents a Möbius map or permutation. The requirement
ad bc  means that the four points define a tetragon 

(quadrilateral or quadrangle) with a nonzero area, ensuring 
that this LFT has inverse 

1
( )

bzd dz bdf z
c cz aaz

c


 
  

      
 

If z approaches the origin (| | 0),z   we obtain (0) bf d 

and
1

(0) .bf a

   If ad = bc (the parabolic transform), then 

,b d b aanda c d c  and hence their direct and inverse

maps are (characteristic) constants of the Möbius
transformation taken as the limiting values of and from 

infinity, i.e., ( ) af c   is the inverse pole and 
1

( ) df c
    is the direct pole. The requirement

1
{ , ( ), ( )}z f z f z A




  makes these four (irreducible)

rationals, namely , , , ,b b a dandd a c c
  limiting values 

where 

A

is punctured. 

Mind that eq. 3 is the composition of a translation from the 
direct pole (eq. 4), a conjugation (inversion and reflection) 
concerning the real axis (eq. 5), a nonzero homothety 
(scaling) plus rotation (eq. 6), and a translation to the inverse 
pole (eq. 7), namely 

1
( ) df z z c                 

(4) 

2

1( )f z z                                                          

(5) 

23

( )
( )

bc ad z
f z

c


                                                

(6) 

4
( ) af z z c                                                    

(7) 

2

4 3 2 1

(

( ) ( ) ( ) ( ) ( )

bc ad
a c

f z f z f z f z f z
dc z

c



    


If ad → bc, the rotation effect dissipates, so 
1

( ) ( ( ) )a df z and f zc c



    as expected. 

Likewise, note that a Möbius map is the Laplace transform of 
an impelling Dirac force (proportional to the inverse pole) 
and a steady exponential (decaying as the direct pole), i.e., 
impulse plus friction 

2

( )
( ) ( ) ( )

d
t

c
a bc ad

t e z f z
c c

 
  

   
  

For a
c and bc ad are nonzero, no system can unfold a 

Möbius map without exerting a punctual shove or prod 
followed by growth or decline. This insight has profound 
implications in physics; a stimulus with reinforcement or 
cessation transforms the space. 

The Möbius transformations of 

A

 constitute the "physical" 
Möbius Group. It is noticeably a supergroup of the Modular 

Group, which we redefine as the set of LFT over  that acts 

transitively on the points of 
2

 visible from the origin, i.e., 
the irreducible fractions, preserving the form of polygonal 
shapes. 

A Möbius map preserves generalized circles (lines or circles) 

in the complex plane. Unlike the complex plane, the 

A

 
plane, or Möbius plane, does not allow flat subspaces so that 
straight lines exist just in the limit; for instance, reflection at 
a line is inversion at the asymptote of a circle with diverging 

radius. 

A

 handles a line like the real-algebraic projective 
line. Hence, Aˇ focuses on the circle only, a set of points z at 
radius r from a center point o, i.e., | 0 | .z r  After 

squaring, the circle becomes 
2

,zz oz oz oo r    or in 

general, the vanishing expression ,Azz Bz Bz C   with 

, , ,A C E B A  and .BB AC A straight line corresponds to

case A → 0. A circle is invariant under translations, 
homotheties, and rotations, while inversion at it implies the 

change of variable 1 sz  , yielding the vanishing expression 

,Css Bs Bs A   another circle, only that AC BB in this 

case. 

We can generalize an LFT to projective lines of rings. The 
LFT analog of Möbius transformations over the dual-
algebraic numbers is a Laguerre transformation, which acts 
on the dual-algebraic plane adjoining a line of points at 
infinity, so topologically becoming an infinite cylinder. Much 
as Möbius transformations preserve the circle, parabolas are 
invariant under Laguerre transformations; lines are parabolas 
arbitrarily flattened. A Laguerre transformation maps vertical 
parabolas on the cylinder to vertical parabolas in the plane, 
just as a Möbius transformation maps circles of the Riemann 
sphere onto circles of the plane. 

Likewise, a Minkowski transformation is an LFT over the 
split-algebraic numbers adjoining two lines of points at 
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infinity that bisect the axes. This "splitalgebraic projective 
line" is isomorphic to the geometry of plane sections of a 
hyperboloid of one sheet. Minkowski maps preserve the 
hyperbola, which approximates a line when the curvature at 
its vertex vanishes. These projective lines are usually known 
as the Möbius, Laguerre, and Minkowski classical "planes", 
isomorphic to the geometry of plane sections of their 
corresponding three dimensional model, to wit, the sphere, 
the cylinder, and the hyperboloid of one sheet, from which 
we can accomplish "stereographic projection" onto the plane. 

ZERO CONFORMALITY 
On the importance of conserving concyclicity and angles as 
much as possible, especially locally. 

Cross-ratio 
Möbius, Laguerre, and Minkowski transformations are 
homographies, i.e., isomorphisms of projective spaces. These 
mappings hold the structural or configurational relations 
among the elements of the original space in the new space, 
although some information can be lost; every homography 
presents a new perspective or connects two perspectives of a 
given system. Specifically, homographies are LFT when we 
identify the "projective line" over a ring with its adjoining 
"infinite points", i.e., points at infinity. 

 Projective geometry deals with proportions and assumes that 
any two lines intersect. We can take the incidence points as 
projective line landmarks. Since the cross-ratio is a central 
rational construct that, in plain language, calculates the 
positioning of a pair of points concerning another, a planar 
homography preserves the cross-ratio of four distinct points 
and has vectorial form 

3 1

3 2

1 2 3 4 4 1

4 2

( , ; , )

z z

z z
z z z z

z z

z z










(8) 

If one of these vectors points to infinity, i.e., represents an 
infinite point, we erase the two differences associated with it. 

If 
1 3 2 4

, ,z z or z z  the cross-ratio vanishes. If 

1 2 3 4
,z z or z z  the cross-ratio tends to the unit. If

2 3 1 4
,z z or z z  the cross-ratio diverges. 

Cross-ratios are invariant under LFT over rings. In particular, 

{0, }A   rules this projective invariance via Möbius maps 

according to the expression 

1 2 3 4 1 2 3 4
( , ; , ) ( ( ), ( ); ( ), ( ))z z z z f z f z f z f z    

(9) 

If A, B, C, and D are four distinct points on a circle in the 
Möbius plane, eq. 8 reduces to 
( , ; , ) (| || |) / (| || |),A B C D CA DB CB DA where a pair of 

vertical bars indicates the Euclidean length of the line 
segment connecting the pair of points. In this form, we 
regard the cross-ratio as a measure of the extent to which the 
ratio with which point B divides AC is proportional to the 
ratio with which B divides AD. 

Remember that the cross-ratio’s imaginary part 

1 2 3 4
[( , ; , )]z z z z vanishes if, and only if, the four points lie 

on the same circle. Since the action of the Möbius group is 

"simply transitive" on a triple of 

A

, the unique Möbius 

transformation m


 to arrive in {0, 1, } from any triple of 

distinct points 
3 2 4

{ , , }z z z is 

1 1 1

2 3 4
( ) ( ( ), 1; 0, ) ( , (1); (0), ( )) , ; , }m z m z z m m m z z z z

  

    
    

and the only Möbius transformation 
1

m



to come in  

3 2 4
{ , , }z z z from {0, 1, ∞}

1 1

2 3 4
( ) ( ( ), 1; 0, ) ( , (1); (0), ( )) ( , , , )m z m z z m m m z z z z

 

    
    

The cross-ratio of a "concyclic" quadruple of algebraic points 
is a realalgebraic number because 0, 1, and ∞ are points of 

the real-algebraic projective line so that 
1 2 3 4

( , ; , )z z z z is real-

algebraic if 
1

1 1
( ) ( )m z or m z



 
are real-algebraic. 

Since a point and a line are dual and interchangeable by the 
"principle of plane duality" in a planar projective space, if 

, , ,a b c and d  are four distinct lines emanating from a point, 

their cross-ratio is 

( , ; , ) (sin sin ) / (sin sin ).
c d c d

a b b a
a b c d      In this disguise, 

a sine plays the role of a distance, and the interpretation of a 
cross-ratio is the same, i.e., a measure of how much the 
quadruple deviates from the ideal proportion 1. Therefore, 
the cross-ratio applies to points and lines equally, in 
agreement with the precepts of projective geometry. 

If the four vectors involved in eq. 8 point to infinity, only 
characterized by their slopes l, m, p, and q, their cross-ratio is 

1 2 3 4

1

( , ; , )
1

p

p m
z z z z

q

q m










J Pure Appl Math Vol 7 No 3  May 2023



 The zero delusion 

168

We cannot expect the cross-ratio to be a real-algebraic 
number because these infinite points are not on a circle with 
a radius r ∈ A. This remark also applies to points of the 
Laguerre and Minkowski planes. How can this slope-based 
formula result in a specific algebraic, split-algebraic, or dual-
algebraic number with a non-vanishing imaginary part? In 
the case of split-algebraic numbers, we must make   

represent the diverging slopes of two lines meeting infinity. 
Thus 

2 2

2 2

2 2

2 2

2

2 2

( , ; , )
1

( )( )

( )( )

( ) ( )

( 1)( 1)

(1 ) ( ) 2 (1 1 )( )

(1 ) ( )

1 tanh 2 tanh
( )

1 tanh 1 tanh

cosh(2 ) sinh(2 )

exp(2 )

m m
l l

m m
l l

m m
l l

m
l

l

m
l m

m

l m

l m

l m

l m

lm m l m m l

lm m l




   





 


 

 


 

      


  

  
 

   

   

 

where we use the hyperbolic tangent subtraction formula 

tanh( ) ( ) / (1 )
m

l
m l lm     in (∗). Likewise, and  

represent the diverging slopes of two pairs of lines meeting 
infinity in the Möbius and Laguerre planes, respectively. The 
reader can check

1 1( , ; , ) exp (2 ) ( , ; , ) 1 2 ( ) exp(2 )
l l

m m
l m and l m m l              

using the tangent subtraction formulas 

tan( ) ( ) / (1 )
m

l
m l lm    and tan ( ) ( ) / ( , ),

m

l
p m l l  

where tanp is the parabolic tangent. 

These results confirm that we can extend the cross-ratio to 
rings and calculate angles using cross-ratios. Specifically, the 
(principal value of the) natural logarithm’s imaginary part of 
an algebraic, dual-algebraic, or split-algebraic number of 
modulus one is its (double) argument. In other words, a 
generalized angle is half the area swept by the rotation about 
the origin on a segment of the unit cycle. Indeed, 0 is the 
area swept by the "straight" unit cycle, i.e., along the unit line 
segment (1-ball). 

This view expands the Exponential Map, which, applied to 
the imaginary axis and parametrized by the generalized angle 
y, generates cycles of elliptic (standard) 

2
(exp( ) cos sin , 1),y y y      hyperbolic 

2
(exp( ) cos sin , 1),y hy y       and parabolic 

2 2 2
(exp( ) 1 , )y y        geometry. Any conic, e.g., a 

rotated ellipse, admits this interpretation of angle via the 
cross-ratio, in agreement with the statement "there is scarcely 
any part of conics to which the theory of cross-ratio is not 
applicable". Fig. 2 comparatively displays the geometry of the 
zero-free two-dimensional rings. 

Moreover, we can express an LFT as a composition of cross-
ratios of one variable z taking values in an extended ring; a 

translation ( , 1; , )d z zc
   (eq. 4), a conjugation 

( 1, 0; , )z z  (eq. 5), a rotation 
2

(0, / ( ); , )z c bc ad z  

(eq. 6), and another translation ( , 1; , )a z zc
    (eq. 7). 

Thus, an LFT is a crossratio of cross-ratios, and we can 
express the cross-ratio projective invariance that generalizes 
eq. 9 just in cross-ratio terms as 

( , ; 1, )t t z z t   

2
( , 1; , ) (0, / ( ); , ) ( 1, 0; , ) ( , 1; , ) ( )a dz z z c bc ad z z z z z fc zc c
          

1 2 3 4 1 2 3 4
( , ; , ) ( ( ), ( ); ( ), ( ))z z z z fc z fc z fc z fc z

Coding 
Once described the power of the cross-ratio and its 
transformational approach, let us tackle the notion of 
conformality. Roughly, a conformal transformation preserves 
the angles between intersecting conics and between the cords 
of four points on a conic. Besides, a conformal
transformation preserves conics and the cross-ratio of 
concyclic points, understanding concyclicity as the condition 
of a set of points on the same conic. For instance, the circle
inversion map 1/z = s in the Möbius plane is "anticonformal" 
according to our description, meaning that angles keep their 
value but reverse direction. In contrast, the genuinely 

conformal function 1 sz  preserves angles and orientation 

Figure 2) We illustrate the predefined singularities of the two-dimensional 
rings in red. The exponential map of the generalized angle times the 
corresponding imaginary unit defines the associated cycle group, shown 
framed. The Möbius plane is on the top-left, like 
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a complex plane but punctured at the origin. The geodesics of this 
plane are circles. The circle group uses the imaginary complex unit, 
which equals −1 if squared. The Laguerrian plane, on the bottom-
left, is the plane of dual-algebraic numbers whose null vectors are on 
the imaginary axis. The geodesics are parabolas. The parabolic 
group uses the imaginary parabolic unit, which vanishes if squared. 
The Minkowskian plane, on the bottom-right, is the plane of split-
algebraic numbers whose null vectors are on the diagonals. The 
geodesics are hyperbolas. The hyperbolic group uses the imaginary 
hyperbolic unit, which equals +1 if squared. The plot in the middle 
outlines the unit cyclic (circle, parabola, and hyperbola) rotation of 
the standard, dual, and split algebraic numbers as exponential maps 
applied at the origin of the real axis. The Euclidean plane E × E is 
on the top-right, the plane of the real-algebraic numbers E whose 
null vectors are on the axes. The geodesics are straight lines. The line 
group has no imaginary unit. 

In two dimensions, conformal transformations in the 
Möbius plane are holomorphic (analytic, regular) maps such 
as polynomial, exponential, trigonometric, logarithmic, and 
power functions that preserve local angles. Any conformal 
mapping of a variable taking values in Aˇ with continuous 
partial derivatives is holomorphic, and conversely, a 
holomorphic function is conformal at any point where its 
derivative does not vanish. A Möbius map has continuous 

derivatives except at ;dz c
  from this point, the Möbius 

map defined by eq. 3 is conformal throughout Aˇ. Any three 
points in the Möbius plane define a conformal map; in 
particular, by fixing 0 (nothing), 1 (something), and ∞ 
(everything), or −1 (minus something), 1 (plus something), 
and ∞, we can define metric-independent conformal maps 
that relativize the notion of "neighborhood" by adapting the 
size and curvature of the figures around a point to conserve 
their shape. 

A generalized conformal map is a concatenation of LFT over 

rings. In addition to the elliptic rotations ascribed to 

A

, the 
extension contemplates the parabolic rotations in the 
Laguerre (right) plane and the hyperbolic cycles in the 
Minkowski (right) plane. Null vectors are uncomputable and 
hence considered limiting values; Möbius, Laguerre, and 
Minkowski planes ban the origin, the imaginary axis, and the 
diagonals ∝ (1 ± j), respectively. Conformality follows again 
from the fact that generalized rotations by α (f → αf), 
translations by β (f → f + β), and inversions (f → 1/f) 
preserve angles. The null map is not conformal because α 
and β are nonzero. 

Cross-ratios are the basis of conformal geometry because we 
can write conformal maps in cross-ratio form, e.g., 

2
( 1, 0;( 1, 0; , ), ) 1z z z z z       and 

2
2(( 1, ; 1, ), , 0, ) ,

( )
z z

z z
   


where z belongs to a ring 

extended with (null vectors and) infinite points. The two 
open (for differentiability) subsets in the plane that a 
conformal mapping connects are essentially indistinguishable 
from the cross-ratio invariant projective geometry’s 
viewpoint, so we can study functions with given properties 
on a somewhat complicated region by first mapping it to a 
simpler one, conserving the properties of the function in the 
two-way transference between both subsets. 

This scenario suggests that we can use a subset of the domain 
as a region to encode the information received from the 
"external" world. A concyclic quadruple’s cross-ratio is a real-
algebraic number ranging from 1 to ∞ if the elements are 
consecutive, except when all the four points are infinite. 
Since hyperbolic functions are rational functions whose 
numerator and denominator are linear or quadratic on real-
algebraic coefficients of the exponential function, taking the 
(real-algebraic) natural logarithm gives rise to inverse 
hyperbolic functions, such as arccos, arcsin, and arctan, 
where the prefix "ar-" means "area". Because the "inner" world 
encodes external data logarithmically, it is a "hyperbolic 
space", regardless of whether we model the world as a 
Möbius, Laguerre, or Minkowski plane. Nevertheless, these 
planes determine the conic invariant under LFT and 
somewhat the contour of the "coding space" where 
hyperbolic geometry applies; given two interior points and a 
conic, the "shortest" path connecting them must 
orthogonally intersect the boundary of the coding space. 
These paths are the geodesic lines that tie the coding space 
with the observable, decoded world. 

The need for an efficient numeral system justifies using the 
logarithmic scale. While a linear scale has no curvature, so its 
numbers are equidistant, the logarithm shrinks angles and 
distances to convert (flat) Euclidean into hyperbolic spaces. 
For example, positional notation grows on a one-
dimensional hyperbolic space, H1, and the analog of E2 is the 
hyperbolic plane, H2, a surface of constant negative 
curvature. Logarithm and conformality form a strong bond 
because of the hyperbolic geometry’s absolute relation 
between distance and angle (see Figure 2.5). Informally, this 
interdependence means that two hyperbolic lines can achieve 
true parallelism only at tiny distances; as they move away, 
one line sees the other rotate until they become 
perpendicular at infinity. In a coding space, parallelism and 
conformality are countable, i.e., nonzero and finite; 
conformal mapping generally preserves angles only locally 
and loses consistency at large distances. Pondering this fact is 
critical in physics problems where keeping the structural or 
causal links between the elements of a system or organization 
as much as possible is required. 
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Note that a coding space is doubly conformal, first, 
supported by and immersed in spaces whose isometries 
derive from conformal transformations, and second, 
equipped with a metric of inverse hyperbolic functions. For 
instance, the unit disk of the Minkowski plane preserves the 
angles between intersecting hyperbolas, but absolute and 
relative (cross-ratio) distances are Euclidean lengths. The 
Beltrami-Klein (Klein disk) model handles distances 
logarithmically but preserves no conic and distorts angles. 
These disk models are not doubly conformal. Additionally, 
we require a coding space to be a subspace of the universe; 
otherwise, we would not have "space" to decode the 
information. For instance, the hyperbola-based Gans model 
is doubly conformal but not a coding space because it maps 
H2 onto the entire E2. 

However, the Poincaré disk (Chapter IV, The Non-Euclidean 
World in) is a doubly conformal model of hyperbolic 
geometry that projects the whole H2 in the unit disk. Circle-
preserving Möbius transformations create the isometries of 

the universe, 

A

. The logarithmic measure of separation 
between points is invariant under the subset of Möbius maps 
acting transitively on the unit disk, which becomes a coding 
space. Assuming that the disk center is at the plane’s origin, 
points z2 and z3 within the disk connected by the arc of a 
geodesic circle perpendicularly intersecting the disk’s 
boundary at z1 and z4 are at hyperbolic distance. 

2 3 1 2 3 4
( , ) ( , ; , )

H
d z z In z z z z

Physically, we can suppose that the disk is a body, and the 
superposition of the configurations ±1 and ±ı describes its 
quantum state. Since circles in Aˇ tend to be straight lines 
when the radius of a geodesic diverges, we can take −1, 1, s, 
and ∞ as consecutive concyclic points of the real-algebraic 
projective line. Then, an object S outside the unit disk at 
Euclidean distance s from its boundary is at hyperbolic 

distance (1, ) ( 1, 1; , ) ( 1) ( 1).
H

d s In s In s s      Circle

inversion 1z z leaves the conformal distance invariant, 

i.e., 0, 1 , 1,d s and −1 are consecutive within the disk

along a diameter satisfying 

( 1) ( 1) ( 1, 1; , 0) (1 ) (1 ) .s s d d d       S is now within the 

disk infinitely far away from the origin and at Euclidean 
distance d from the boundary, and hence at conformal 
distance 

1 1 1
( ) (1, ) ( 1,1; , 0) ((1 ) (1 ) tanh ( ),

2 2 2C H
d d d D In d In d d ar d      

which is in the range (0, ∞). While the sum of distances u 
and v is linear within this coding space, namely artanh (u) + 
artanh (v) (addition of two areas), it corresponds to Einstein’s 

addition and subtraction formula (on the collinear form) of 

velocities tanh ( tanh( ) tanh( )) ( ) 1 )ar u ar v u v uv    in the 

external, decoded world. 

The Poincaré (conformal) distance is a measure of relativistic 
speed, i.e., the hyperbolic area that separates two frames of 
reference in relative motion, ergo the punctured Poincaré 
disk is a rapidity space that encodes what happens in the 
Möbius plane. Alternatively, one sheet of a two-dimensional 
hyperboloid of revolution embedded in the Minkowskian 
three-space serves as another model of H2. 

Remember that the Möbius, Laguerre, and Minkowski 
planes are flat, and so is the Minkowski spacetime. 
Minkowskian spaces handle hyperbolic angles, but the 
distance between two vectors is the norm of their difference, 
i.e., Euclidean, while the embedded hyperboloids measure
hyperbolic distances along geodesics. In other words, only
"the non-Euclidean style of Minkowskian relativity" is doubly
conformal, while the algebraic ambient spaces are not.

According to Liouville’s theorem, a conformal map in n ≥ 3 
dimensions between two open regions of Euclidean space is 
equivalent to a composition of n-dimensional Möbius 
transformations, namely homotheties, translations, rotations, 
and inversions in the (n − 1)-sphere. Using the exponential 
map, we can interpret a conformal transformation as a 
diffeomorphic mapping between two manifolds 
implemented as a Möbius map in an open neighborhood of 
each point. If f is a bijective mapping of an open set S in En 

onto f (S) with vanishing differential dfx nowhere in x ∈ S, 

then f is conformal if and only if 
2 ( )

, ,
x

x xdf df e


u v u v

for all ,
n

Eu v ,where the brackets denote the inner 

product; ω (x) is a rational-valued function that is nonnull if 

the angles 
v dfx

u dfx
and 

v

u
differ. Conformal transformations of 

En map m-spheres to m-spheres (m < n) without exception 
because degenerate flat subspaces do not exist. 

We can employ the unit ball of E n centered at the origin as 
a coding space having as a boundary the unit (n − 1)-sphere. 
Depending on the conformal transformation, the open side 
(infinity) can be the origin or the boundary. Using the 
Euclidean norm || ||, the Poincaré ball model defines the 
conformal distance dC between two points z2 and z3 in the n-
dimensional unit ball, connected by the geodesic that 
intersects the unit (n − 1)-sphere at the ideals z1 and z4, as 

3 1

1 3 2
22 3

4 1

4 2

|| ||

|| ||
( , )

|| ||

|| ||

C

z z

z z
d In

z z

z z










z z
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The problem is that the cross-ratio provides decreasing 
information and increasing flexibility with the number of 
dimensions, mainly owing to the growth of possible 
geometric configurations of distinct tuples of points and the 
complication of specifying when they are in "general 
position".

Physics has a great interest in conformality. Random 
fluctuations are conformal in a plane, i.e., conformal 
invariance is a property of Brownian motion. In all 
dimensions, conformality reflects causality and scale 
invariance, hence a means of natural renormalization. The 
set of all causality-preserving transformations in a point 
vicinity is equivalent to the conformal group. We can 
manage this local Lie group globally through a "conformal 
compactification" of the domain, which allows studying the 
singularities of the original topologically open space confined 
into a conformally equivalent closed (finite) space with 
adjoining limiting points. In two dimensions, the 
compactified spaces are the three-dimensional models of the 
Möbius, Laguerre, and Minkowski planes that we introduced 
at the end of the previous section. In all dimensions, the 
conformal compactification of Euclidean space requires 
adding a point at infinity in one more dimension and 
stereographic projection, which is a conformal map itself. 
Extending the flat Minkowski spacetime into a Lorentzian 
"infinite-sheeted" cylindric covering, i.e., the "Einstein 
cylinder", is another application of conformal 
compactification.
More specifically, physicists use conformal transformations 
in theories of gravity and cosmology. For instance, the 
domains of relativity are de Sitter space, Minkowski 
spacetime, and anti-de Sitter space corresponding to elliptic 
(positive curvature), Euclidean (no curvature), and 
hyperbolic (negative curvature) geometries; all three can give 
place to (doubly conformal) coding spaces. Furthermore, a 
point-dependent local rescaling of the metric tensor gab → 
Ω2 gab affects the time and space lengths but respects the 
causal structure of spacetime. Specifically, the Weyl map sets 

( )
( ) ,

x
x e


  where ω (x) is a scalar field w at the spacetime 

event x, getting a new source of Einstein’s gravity and a 
power-law potential of cosmological inflation Figure 3. 

Quantizing gravity is generally achievable whenever we can 
map every point of the spacetime manifold to flat space 

conformally (e.g., 
2

,ab ab
n g


   where ηab is the flat 

Minkowski metric); Ω cannot vanish, so a conformal model 
blocks past (e.g., the Big Bang) and future (e.g., a black hole) 
singularities of spacetime curvature. This is why conformality 
is also crucial for QFT in curved spaces and superstring and 
supergravity theories, giving rise to the famous 
correspondence between a QG theory in 5-dimensional anti-
de Sitter space with a 4-dimensional supersymmetric 
conformal-invariant QFT via isometries of H3. 

Figure 3) Nonzero route" to conformality and coding space. The 
cross-ratio is a zerofleeing double ratio that contemplates an 
exponential map as a generalized rotation and fosters recursion to 
generate all conformal transformations. These are mappings or 
smooth deformations between domains or surfaces that do not alter 
angles within a point’s neighborhood but possibly distort length or 
curvature. All conformal groups are local Lie groups represented by 
a class of linear fractional transformation that allows "closing the 
domain" by adjoining zeroes and poles. These conformally 
compactified spaces are at the heart of Quantum Field Theory and 
many gravitational theories, constituting one of the avenues to 
Quantum Gravity. Conformality is closely related to causality and 
scale invariance. A Conformal Field Theory is just a Quantum 
Field Theory supported by and immersed in spaces whose isometries 
derive from conformal transformations. Additionally, if the theory 
has a metric of inverse hyperbolic functions, we say it defines a 
"coding space". In particular, we get a valid hyperbolic metric by 
taking the natural logarithm of a cross-ratio. 

CONCLUSIONS 
We bring in our verdict on the number zero. 

Zero’s impression 
We can explain mathematical knowledge in naturalist terms 
from the perspective of evolutionary biology, cognitive 
science, and sociology of science. However, only the latter 
can explain why we overlooked the historical and geopolitical 
factors that led to the consolidation of the number zero. In 
Dantzig’s view, the "guiding motive throughout this long 
period of groping was a sort of implicit faith in the absolute 
nature of the unlimited". Then, Cantor’s approach to 
conquering the irrationals consummated the era of modern 
analysis, delivering the theory of functions based on infinite 
processes and the continuum, where zero fits seamlessly. Our 
investigation shows that the immeasurable perfection that 
zero embodies has as little scientific value as beauty.  

Thanks to Cantor’s grandest dreams and his supporters, 
intellectuals took real numbers for granted, to the point that 
mathematicians and philosophers such as Brentano, Weyl, 
and Brouwer studied faithful continuum representations 
based on discrete elements. As collateral damage, the "real" 
zero rolled up to present-day science; today, mathematics and 
physics use it habitually. This inertial frenzy combines with 
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conserved quantities is an evasive limit case in practice. 
While we can anticipate the behavior of a system to a degree, 
"perfect predictability is not achievable, simply because we 
are limited in our resolving power" (The Theoretical 
Minimum by Susskind). Likewise, our explanatory capacity 
of the past is nonzero but also restricted at a fundamental 
level because a quantum measurement outcome has an 
aleatory character impeding inferring the system’s initial state 
accurately. In game theory, no game gives null chances to 
one of the participants. Change has a nonzero cost in daily 
life; "There is no such thing as a free lunch".  

Advance in QG has encountered severe obstacles in the last 
century. Physics has traditionally identified zero and infinity 
as "immeasurably small" and "immeasurably great", 
disregarding that both concepts are untouchable. Classical 
Newtonian physics does not leave space to indetermination, 
against the fact that we cannot precisely localize objects in 
the spacetime fabric. Similarly, something rather than 
nothing must sustain the universal assets that propagate 
information causally and quantum-mechanically, conveying 
that the beings the spacetime accommodates must retain a 
minimum hypervolume, energy-momentum, curvature, and 
torsion. On top of this, as Smolin remembers, our physical 
theories should predict a system’s dynamics avoiding 
predetermined mathematical structures as much as possible, 
especially without reference to a background metric or 
asymptote. Neither classical nor quantum physics are 
background-independent theories; the assumption that the 
background is noninteractive is an idealization. Accordingly, 
QG must account for a countable, i.e., nonzero and finite, 
world and pursue a coordinate-free and zero-free model 
where all the actors, especially the background, sidestep 
inaction by locally enabling arbitrary freedom degrees.  

The suspicion about zero has driven many physicists to 
believe there may be a universal minimal length scale at 
approximately the Planck length. This threshold determines 
the scale beyond which measurements of spacetime intervals 
are impossible. It is likely but not necessarily the definite 
scale limit of the universal weave. Anyhow, a fundamental 
granularity is a universe’s motivation for countable 
discreteness because the physical implementation of a lattice 
with endless tiers would require unlimited energy to be built, 
transformed, adapted, and maintained. A finite assemblage is 
the only way through if the cosmos has an evolutionary sense 
via a logic of economy and efficiency. This claim agrees with 
our experience, which "seems to controvert at every step the 
concept of something unending", as Parkhurst and 
Kingsland remark. 

The thermodynamics of quantum information also banishes 
zero and pivots on the vital notion of entropy. Kelvin was the 
first to recognize the significance of "a universal tendency in 
nature to the dissipation of mechanical energy." Roughly, 
entropy measures the number of possible configurations the 
atoms in a system can have. Hence, a low entropy value 
means fewer ways to rearrange microscopic things to create a 
macroscopic structure. Beings’ activity contributes to an 
enduring growth of thermodynamical entropy, foretelling 
that we gradually approach a cosmic death characterized by a 

and Brouwer studied faithful continuum representations 
based on discrete elements. As collateral damage, the "real" 
zero rolled up to present-day science; today, mathematics and 
physics use it habitually. This inertial frenzy combines with 
professional pressure to put aside the foundational issues 
necessary to settle a sturdy QG theory that condemns zero in 
the name of reality.  

The lure of zero is due to its halo of mystique, and none 
questions the magic of this mathematical object. Science 
seems afraid of taking on the uncharted lands of a vacuous 
digit, a missing quantity, an information gap, a concept 
denoting "what remains from the total". One can hardly 
browse results about its intrinsic indeterminacy, and essays 
about the zero’s ontological meaning are rare, primarily 
referring to absence or negation. In this metaphysical 
context, the threesome {something, everything, nothing} 
reasonably symbolizes a part of the universe, the whole of it, 
and the whole’s complement, represented by {1, ∞, 0}.  

Animal species seem to have a system for approximating 
numerosity that includes zero, albeit probably taking 
emptiness as a simple conception of refuted presence. Since 
zero represents "nothing" and has no actual numerical 
weight, humans deem it unfamiliar, as the history of 
humanity proves. We cannot observe zero in nature; if 
anything, we encounter many clues that it is a cosmological 
ghost. Because it plays a dull role in many mathematical 
branches and lacks naturalism, we have posited that zero is 
often futile and, sometimes, a nuisance.  

Zero is nowhere. In statistics and probability theory, every 
sequence of items has a first and last but no zeroth element, 
and no Bayes reasoning assigns null a priori probabilities. In 
logic and computer science, nullary (null arity) functions, 
i.e., operations with no arguments, always have some hidden 
input as global variables or contextual properties of the 
system in question (e.g., state of memory or network time). 
In fractal theory, fractional dimension nil is impossible; 
otherwise, we could contract and dilate nothingness. The 
separation between two distinct points (distance) or lines 
(angle) cannot be zero in geometry. Physical states, processes, 
and transformations have a nonnull finite duration, and the 
interplay between systems is nil in no circumstances. A being 
balances free energy (macro-information, the general, the 
global) against organizational energy (micro-information, the 
specific, the local) throughout its existence, and neither ever 
becomes zero. Moreso, a being is never thoroughly open or 
closed, black holes included. In particular, nobody is wholly 
isolated or fully aware of reality, and our introspection 
capability implies a nonzero finite consciousness. A quantum 
system cannot achieve complete coherence due to the 
inevitable environmental friction, while overly "noisy" 
surroundings lead to its destruction before reaching plain 
decoherence; these extreme states are unreachable, so a 
quantum state is always a mixed ensemble of basis states. In 
quantum information theory, we cannot perfectly copy or 
delete an unknown quantum state (no-cloning and no-
deleting theorems). Forces and interactions are invariably 
somewhat dissipative, so Noether’s first theorem referring to 
the correspondence between differentiable symmetries and 
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limiting value of maximum entropy of the observable 
universe; in particular, quantum systems are prone to 
decohering mechanically, with decreasing entanglement. 
Simultaneously, for information is physical, computation 
naturally raises global entropy through free energy 
consumption, possibly at an increasingly lower rate as the 
universe ages. This proclivity to reduce information gaps 
with every interaction means that uncertainty 
standardization is unidirectional too. Besides, physical 
inaction would signify no data generation, encoding, 
transmission, or decoding, i.e., no time passage. Still, we see 
that time flows. Can we deduce that computation is 
pervasive and has always been? Yes, we can. Can we conclude 
that the universe in its original state had a null 
thermodynamical or informational entropy? We can only 
confirm that it was minuscule immediately after the Big Bang 
(the "past hypothesis"). If zero is unreal, as we declare, and if 
the arrows of entropy and time run in parallel, the origin of 
time, i.e., absolute time zero, does not exist.  

What a being cannot change is not being’s information. 
Something unable to change is not a being. Therefore, a 
being necessarily possesses nonzero information. Specifically, 
a being is a physical system that can change the statistical or 
quantum-mechanical degrees of freedom that somehow 
harbor its information. Such information must have a 
positional code if nature owns a pragmatic touch. In this 
respect, we have posited that standard PN is artificial due to 
inefficiency; it only aggregates the nonzero terms, and the 
leading zeroes introduce ambiguity. We have shown that 
signed (or signed-digit) bijective notation provides zero-free, 
cost-saving, and unique representations of nonzero rational 
numbers and their extensions. 

Observation of nature led mathematics to introduce and 
formalize the thought of grouping beings with the same 
properties. Unfortunately, ST deviated from reality, starting 
to deal with intricate concepts such as the logic of large 
cardinals. Surprisingly, this mathematical branch has 
explored the null class much less than any infinite set. We 
have explained why managing collections without content 
makes no sense, concluding that ST should circumscribe to 
inhabited and functional sets. The empty set is fictitious; 
neither the cardinal nor the ordinal zero exist. If a group of 
things is possibly void, it is a beable yet not a set, i.e., a 
potential collection that precludes the current universe of 
discourse by default and temporarily. This "settable" implies 
abandoning the ideal of completeness because we cannot 
anticipate its valuation, renouncing the close-world 
assumption.  

We have argued that removing zero from the natural 
numbers is acceptable and necessary. An additive constant is 
not a great deal, especially if we can define 50 it as the sum 
of two multiplicative constants, one for the negative and one 
for the positive integers. We can take −1 as a precursor of 
the negative integers, much as 1 is an inductor of the positive 
ones, both fixed under reciprocation, and 0 ≡ 1 − 1 vanishes. 
Alas, our mathematics adopts 0 to make 5 + 0 and 2 − 2 = 0 
well-defined arithmetic expressions at the expense of dealing 
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with undefined forms such as x/0; what is good about it? We 
have not found any compelling reason to involve zero in the 
arithmetic of the sets N, Z, and Q. Similarly, fields and rings 
based on Q-completions such as R, C, H, and O are 
troublesome because zero has no multiplicative inverse, and 
evaluating to zero is uncomputable. Algebraically, ignoring 
division by zero and conceding that a ring is a domain free of 
null vectors is not a drama. In this case, the difference 
between field and ring blurs; the mathematical definitions of 
field and domain lose their sense, and only commutative and 
non-commutative rings stay. Every member of a zero-free ring 
has a polar decomposition.  

The critical problem with zero is rooted in the ideas of 
infinity and ultradensity, which are very far from the 
(quantum) reality. Physics increasingly discovers new 
evidence of the cosmos’ compartmentalized character, 
although the impossibility of endless divisibility at the lower 
scales will remain untestable for decades. Empirically, 0 is as 
exceptional as ∞ is, only acquiring significance as the limiting 
value of an asymptotically vanishing sequence. As Liangkang 
puts it, "zero represents the horizon of metaphysics: we can 
forever approach it, but we cannot ultimately arrive at it." 
Moreover, the irresistible instinct to insert a fulcrum that 
fills the hole between a line’s negative and positive sides has 
a simple explanation as a sheer manifestation of the "horror 
vacui".  

With all respect to Brahmagupta, antiquity was correct in 
denying zero as a number of the linear scale. Zero initially 
seemed to provide us with new ken rudiments but has been 
disappointing afterward. Although a significant part of the 
effort of the last two centuries in physics pivots around the 
number zero, the outcome has been less fruitful than 
disturbing. Today, zero covers mathematics and physics in 
mud, making them less easy to teach and learn. Because zero 
is exceptional, vacuous, and inoperable, science must 
reconsider its meaning and how to utilize it. 

Zero’s future 
Nonetheless, zero is possible and has a reasonable probability 
of existing as a reference value in prospect. From this 
outlook, we can give zero a geometrical meaning; zero 
symbolizes flatness, i.e., the straight line constant, much like 
P, е, and π, constants of the perfect parabolic, hyperbolic, 
and elliptic cycles. The continuum, 0, P, е, π, and ∞, only 
exist virtually in the offing. Algebraically, zero is the 
transcendental number 0.0 · · ·, whose expansion in 
standard PN is zero between the decimal point and "the end 
of the sequence". Consequently, although mathematics has 
adopted zero as the abstraction of "inconceivably minute", 
physics must take it as a computable "arbitrarily small" 
number or the smallest nonzero rational in hand. No special 
apparatus is needed to carry out this actualist idea, for 
computers already make us keep our feet on the ground, 
giving us enough power and precision in real-time to attack 
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and solve real-life problems far before reaching the natural 
boundaries. 

Real numbers devouring memory and time are nonsensical 
in a cosmos eager for productivity. "Therefore, all of classical 
continuum mathematics, normally invoked in our 
formulation of the laws of physics, is not really physically 
executable. [...] If we cannot distinguish π from a terribly 
close neighbor, then all the differential equations that 
constitute the laws of physics are only suggestive; they are not 
really algorithms that allow us to calculate to the advertised 
arbitrary precision", affirms Landauer. Although we build 
our physical theories upon , "real" is a misnomer in an 
inaccurate universe. Nature bears and propagates moderate 
quantities of imprecision, whence controlled randomness, to 
minimize the missing information while balancing simplicity 
and complexity, a comparative and incremental task that 
ensures sustainable computability and evolution. The 
rationals fit better in a relational universe where uncertainty 
is everywhere and ratios predominate over absolute 
distances. We surmise that measuring a being’s property is a 
refinement process of successive rational approximation to 
the relation between the observer instrument and the 
observed, as the convergents of an irrational’s continued 
fraction do. 

Furthermore, we must accept imperfection as essential. 
Given that some indeterminacy is unavoidable, a natural 
positional number system must operate with constructible 
entities so that calculating the exact root of a polynomial 
does not consume the universe’s lifetime. We claim this 
universal computational framework manipulates properties 
as though they were variables taken in the nonzero rational 
numbers, , concatenating arithmetic operations to resolve 

polynomials only approximately. Ultimately, a list of nonzero 
rationals univocally defines a minimal polynomial whose 
roots give rise to the algebraic numbers punctured at the 

origin, A , and to the nonzero real-algebraic numbers, the 
actual Euclidean space E in one dimension. 

A

That zero without infinity makes no sense is crystal clear 
when we study - based modular maps and the more 

general setting of a Möbius transformation. A Möbius map is 
an LFT that defines a pure (triply-)transitive group action on 
the 2 × 2 invertible matrices with elements of , which fixes 
1 (the basic something) plus the predefined limiting values 0 
(nothing) and ∞ (everything). A Lie group, the exponential 
map of a Lie algebra, aggregates these infinitesimal 
transformations successively through the ongoing action of 
its multiplication operator. Laplace transform, whose integral 
uses the exponential as a weighting function, also illustrates 
that nature is twofold, simultaneously handling a linear and 
a logarithmic scale. Specifically, the poles of a Laplace 
Transform synthesize the critical parameters of the 
generating signal, net information coding. The universality 
of the exponential function is even more apparent when we 
consider maps of linear fractions over the nonzero dual and 
split-algebraic numbers via concatenation of translations, 
conjugations, and rotations. In these rings, the LFT’s 
singularities are limiting values that adjoin the plane, like 0 
and ∞. A generalized LFT preserves the angle (area) between 
two intersecting conics of the same type, hence the ring’s 
conformal structure (e.g., a figure’s shape). 

When n ≥ 3, an n-dimensional Möbius transformation is a 
domain’s most general conformal isometry, ensuring smooth 
translation moves, dilations, contractions, rotations, and 
inversions. The main invariant of a conformal 
transformation over a ring is the cross-ratio, the relative 
distance that separates a pair of points (or lines) from 
another, precisely the extent to which two ratios of 
differences deviate from a proportion. The cross-ratio is a 
universal construct that ensures angle invariance, 
contemplates an exponential map as a generalized rotation, 
fosters recursion to generate all conformal maps, and 
qualifies coding spaces ruled by hyperbolic geometries. 
Conformality enhances the thesis that our universe handles 
(at least) two scales, and zero only fits in the logarithmic scale 
of coding spaces. Thus, we have arrived at the suggestive 
insight of conformality departing from the redefinition of 
rationality deprived of zero. 

Our finitistic arguments have meaningful implications 
in physics. Zero and infinity are unphysical opposite 
extreme magnitudes, so every lower bound must have its 
counterpart on the large as a maximum value. For 
example, we cannot quantify a particle position as 
incommensurably imprecise because the probability 
density function of its dual single-moded plane wave is a 
uniform distribution with diverging standard deviation. 
Consequently, we can state the Dual Uncertainty 
Principle, which limits to what extent conjugate variables 
can lose (instead of retaining) their approximate meaning 
by renouncing simultaneously ill-defined (instead of well-
defined) complementary properties expressed by a single 

The mathematical structures allowing division by zero, such 
as the projectively extended -line and -line, are partly 
helpful but do not satisfy the field axioms because they 
handle zero and infinity as points. Recanting zero from the 
beginning is a cleaner solution to the problem of undefined 
expressions. We propose to replace these extended structures 
with mathematical objects that interpret zero and infinity as 
the limit of a sequence of nonzero rational numbers whose 
absolute values vanish and diverge, respectively. This bet on a 
rationaloriented geometry of Euclidean spaces is crucial 
when we compare them with projective spaces, where 
coordinates have the consideration of ratios. 
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value; ,x p   where 1 is a dimensionless absolute 

scaling limit. This "certainty principle" hinders foretelling a 
magnitude with arbitrary uncertainty and results 
indiscernible on the microscopic scales humans notice 
compared to the size of the universe; it blocks infinity much 
as the Uncertainty Principle blocks zero. A region 
demarcated by the two hyperbolas corresponding to the 

minimal and maximal product of the variances 
2 2

x p
and 

confines our realm of indetermination. 

Likewise, our theory predicts that a minimum speed exists; 
none can observe that another frame of reference is static, 
i.e., experimentally measuring zero relative speed would
require infinite energy. Additionally, if a discrete and finite
universe is rational-oriented as we sustain, nature would
implement irrational numbers as computable algebraic 
expressions whose main constants, e.g., 2, 3, 5,and might 
be built-in. 

In the long-term future work, we point to a couple of 
additional issues that would deserve further investigation; 
first, the prospect of a universal double logarithmic scale 
(i.e., primality + linear + logarithmic), second, whether the 
logarithmic scale connects with a "natural" probability mass 
function for the rationals (and algebraic numbers), and third, 
a discrete model of spacetime based on a regular space-filling 
tessellation (or honeycomb) of the four-dimensional 
Euclidean or hyperbolic space. A premise for these research 
topics is to put zero aside. 

All in all, this research on zero has helped us recognize that 
the primordial master duality is nothing-everything (zero-
infinity) and that nature yields geometric and arithmetic 
series managed by linear and logarithmic scales onto which 
"something" is respectively decoded and encoded. Precisely, 
the logarithmic scale supports PN. Zero is mathematically a 
null power rather than a number, philosophically a beable 
instead of a being. However, a beable introduces 
indefiniteness to a degree; otherwise would be nada. 
Therefore, zero is budding information implemented as a 
limiting value that indicates the commencement of 
spacetime, much as infinity suggests the end of it. We must 
treat zero and infinity on par and interpret them as 
interchangeable nascent possibilities. 

POSTCRIPT 
This apopemptic chapter includes additional information 
about our activity’s circumstances before and during the 
essay’s development. 
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