EDITORIAL

Theoretical Talk About Topology

Michael Th. Rassias

Michael Th. Rassias. Theoritical talk about topology. J Pure Applied Mathematics. 2021; 5(1):1-1.

Mathematicians associate the emergence of topology as a distinct field of mathematics with the 1895 publication of Analysis Situs by the Frenchman Henri Poincare, although many topological ideas had foundtheir way into mathematics during the previous century and a half.

The definition of Topology is it's a relatively new branch of mathematics as most of the research in Topology has been processing since 1900s and is used in fields of string theory for describing the space-time structure of universe.

We now consider a more general case of spaces without metrics, where we can still make sense of the notions of open and closed sets. These spaces are called topological spaces.

In topology a continuous function is often called a map. There are 2 different ideas we can use on the idea of continuous functions.

Homeomorphism:

A homeomorphism is a function $f: X \rightarrow Y$ between two topological spaces X and Y that is a continuous bijection, and has a continuous inverse function f=1.

Retraction:

A retraction is homotopic equivalence between a space X and a subspace

Y(Y⊆X).

When dealing with retractions we assume we are using the Euclid's Topology.

Some of the subfields of topology are as follows:

Generalised topology normally considers local properties of spaces, and is closely related to analysis.

It generalizes the theoretical continuity to brief topological spaces, inwhich limits of sequences can be existing.

Combinatorial topology assumes the global properties of spaces, foundfrom a network of vertices, edges, and faces.

This is the ancient branch of topology, and reverts back to Euler.

Algebraic topology swaps a topological problem into an algebraic problem that is faithfully easier to get solved.

Algebraic topology sometimes uses the combinatorial structure of a spaceto calculate the various groups associated to that space.

Differentiation topology is useful for learning properties of vector fields, such as a magnetic or electric fields, etc.

Correspondence: Michael Th. Rassias Institute of Mathematics, University of Zürich, Switzerland. E-mail michail.rassias@math.uzh.ch

Received: January 25, 2021, Accepted: January 27, 2021, Published: January 29, 2021

This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http:// creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly citedandthe reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

J Pure Applied Maths January 2021