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 RESEARCH ARTICLE 

Thermal and particle diffusion waves describe the 
relative mass of free standard model particles 

Andreas Mandelis1 , James Howard Osterfield Slater2

or grouped. We must be clear that an ensemble is not the product of 
QFT, it is the precursor. The importance of interactions between 
particles in an ensemble are analogous to  organism population and 

community ecology dynamics, especially the kinetics 
of stability, response to environmental perturbation 
and harmonic relationships [6-9]. These mathematical models 
are normally based on the non-linear logistic function, widely used 
in many venues, particularly when the dynamics involve stable 
oscillations, gradients or harmonic patterns, under steady state 
non-linear equilibrium conditions [10, 11]. The difference 
equation described by May, originally derived by Verhulst, is: 

 (1) 

where: H=population parameter (biomass); r=rate constant The 
May/Verhulst difference equation generates wave-like dynamics,
responding to continuous thermal flow. Incorporating these spatially-
damped thermal oscillation dynamics, comparable to Schrodinger’s 
linear partial differential equation, into Angstrom diffusion wave
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ABSTRACT 
Thermal Diffusion Wave (Thermon) and Particle Diffusion Wave 
(PDW) dynamics are derived from an ensemble of Pre-Particles (PP) 
acting as heat engines. Once a steady state, non-linear logistic 
equilibrium of Thermon and PDW is established, the particles are 
stabilised and SM particles form by interacting with harmonic 
distributions of Thermon and PDW dynamics. The experimental 
observations confirm that this mechanism generates SM particle masses, 
and presumably conform with Quantum Field Theory (QFT) 
expectations. The relationship between Thermon-PDW dynamics and 
QFT is not known. The new Thermon-PDW hypothesis has a key feature,

the continuous flux of thermal energy to drive the Thermon and 
PDW. Concomitantly, sub-models describes the appearance of 
dynamics resembling gravitational and universe time properties.

Keywords:  Thermal Diffusion Wave; Thermon; Particle Diffusion Wave; Pre-

Particle (PP); Pre-universe; Steady State Non-equilibrium; Standard Model 

(SM) of Particles; SM Particle Mass; Standard Rank Number; Modified 
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INTRODUCTION 




H 1( ) rHn n 1 
Hn

he fermion and boson mass measurements are accurately known, 

(SM) particles have the observed mass values. For 
example, Blumhofer and Hutter modelled fermion mass relationships, 
concluding that “fermion mass models … fail to predict the exponential 
mass spectrum of the Standard Model in a natural way [1-3]. Griffiths 
commented: “Why do the bare quarks have the particular masses they 
do? Is there some pattern here? The Standard Model offers no answer, it 
is the business of theories beyond the Standard Model to say where they 
come from” [4]. Preliminary observations suggested that in an 
“ensemble” (or community, group or assemblage) in a common local 
environment of free SM particles there are interactions between the 
constituent free particles [5]. The terminology used in our publications 
needs to be crystal clear as follows: the mathematical analysis reported in 
this  paper refers to Pre-Particles (PP) which are not free SM particles or 
SM bound. It is assumed that free SM particles exist initially without 
reference to the principles and mechanisms of Quantum Field Theory 
(QFT), recognising that SM particles masses will change when combined

 but it is not known why “free” (or isolated or bare) Standard ModelT
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Figure 1) Correlation between logarithm particle mass (MeV/c2) 

with Standard Rank Number (SRN): (blue) bosons; (red) leptons; (green) 
quarks. Black line fitted to leptons and quarks, gradients=1.02(R=0.99). 
Blue line fitted to bosons only, gradient=0.22(R=0.9423) 

Comparing rank number against particle mass indicates that the 
3 free boson group (SRN 12, 13  & 14 or MRN 1, 2 & 3; Table 1) is 
not related in exactly the same way since the SRN gradient is 
about 20% of the single 12 free fermion group gradient (Figure 1 and 
Table 1). The 3 free bosons have a similar pattern, 
nevertheless,  suggesting a common property between boson 
and fermion categories. Relative mass orders between groups 
are not always maintained, for example, neutrinos and 
bosons show an inversion in the MRN sequence (Table 2). 
But for leptons and quarks as separate categories there is striking 
similarity, suggesting that the exact rank position in the group 
is significant (Figure 2 and Table 1). This is endorsed by the 
MRN leptons and quarks since their positions are defined 
without reference to individual particles in the other groups 
(Figure 3 and Table 1). 

Elementry of particle group Fig Rank Number (Standard or Modified) Gradient Intercept 

1 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 S 1.08 -3.21

5 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 15 S 1.02 -2.99

n/s 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 M 1.15 -3.54

3 4, 5, 7 , 9, 11, 15 S 1.04 -3.12

n/s 1, 2, 3, 4, 5, 6 M 2.26 -2.19

4 1, 2, 3, 6, 8, 10 S 0.99 -2.85

n/s 1, 2, 3, 4, 5, 6 M 1.86 -4.42

2 12, 13, 14 S 0.22 8.62 

15 Leptons, quarks & bosons elementry particles (S) 

12 Laptons &  quarks  (S) 

12 Leptons &  quarks  (M) 

6 quarks (S)  

6 quarks (M) 

6 Leptons (S)  

6 Leptons  (M) 

3 bosons (S)  

3 bosons (M) n/s 1, 2, 3 M 0.22 11.04

TABLE 1 

Tabulation of the relationship values between the logarithm of elementry particle mass (MeV/c-2
) and the standard rank number

(S) or modified rank number (M) where the modified rank is given by 1 …+ (n+1) with the coefficient of correlation (R
2
) for each group

n/s- data not shown in associated figure.
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dynamics Grossing introduced the concept of “quantum potential” 
within a thermodynamic framework [12-15]. This showed that the 
classical diffusion equation (Fick’s second law) leads to the 
Schrödinger equation without resorting to quantum mechanical 
formalisms. Schrödinger observed that the “correlation of all features 
of physical phenomena can probably be afforded only by a harmonic 
union of these two extremes” [namely, either] “mass-points of definite
mass and charge” or “the theory of atomic  [i.e. quantum] 
mechanics” [12]. The balanced combination of a quantum thermal 
diffusion framework  with classical particle diffusion due to 
momentum  fluctuations leads to the “Thermon PDW Hypothesis” to 
give SM particles’ relative mass values [16]. 

Free SM particles relationship is a harmonic sequence 
Experimental observations and methods for their 
experimental confirmation assume that the free SM particle 
masses are the same as for the equivalent pre-particles 
(PPS). Free SM particle mass sizes show no patterns within 
or between various free SM particle groups [2]. However, 
if the 15 free SM  particles with mass (excluding photon 
and gluon) are treated as a single group ranked by 
increasing mass, then there is a linear relationship between 
the Standard Rank Number (SRN) and the ln of free 
particle mass (Figure 1). Separating the particles into 
three categories: 3 free bosons, 6 free leptons and 6 free 
quarks, a Modified Rank Number (MRN) is assigned (Table 1). 
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I II III I/II II/ III 

Up Charm  Top 

4 9 15 Same  5 6 

1 4 6 Same  3 2 

Down  Strange  Bottom 

5 7 11 Same  2 4 

2 3 5 Same  1 2 

Electron  Muon Tau 

2 8 10 Same  6 2 

1 5 6 Same  4 1 

E-Neutrino M-Neutrino T-Neutrino 

3 1 6 Invert I & II -2 5 

3 1 4 Invert I & II -2 3 

Z-boson W-boson Higgs-boson 

Quarks  

SRN

MRN

 Quarks  

SRN

MRN

Leptons  

SRN

MRN

 Leptons  

SRN

MRN

Bosons 

SRN 13 12 14 Invert I & II -1 2 

Figure 2) Correlation between logarithm lepton and quark mass (MeV/c2) 
with Standard Rank Number (SRN): leptons; (green) quarks. Black line fitted 
to leptons and quarks, gradient=1.02 (R=0.99)  

Thermal and particle diffusion waves hypothesis
 Basic Model: Non-linear logistic thermal and particle diffusion 
wave equation 
In the following sections: “particle” means “pre-particle”, and 
relative (normalised) masses are considered rather than absolute 
values. In an ensemble of pre-particles (PPs) in a 1D-space, the 
diffusion wave equation is derived from the logistic difference 
equation Eq (1) [8,9] as: 

( )1N N a bNt t t   (2) 
where replacing Hn in Eq (1), Nt = particle density at time t; a 

and b=constant coefficients. Using a Taylor expansion: 

2(t)
( ) ( ) 0( )1

dN
N N t t N t t tt dt      

(2a)

and, allowing for a spatial coordinate dependence of particle density, 
Eq (2) becomes a partial differential equation: 

( , ) ( , )
[( 1) ( , )]

N x t N x t
a bN x tt 


 


  (3) 

where, in the limit t →   0, t= which is a characteristic time for the

particle ensemble system defined in diffusive motion terms. 

Eq (3) is solved with a ≠ 1 and b ≠ 0 to yield: 

( 1) ( ) ( )
( , )

[1 ( ) ( )]

a G x f t
N x t b G x f t






where, the initial condition is defined as: 
( 1) /( ,0)

( ) ; ( )
( 1) ( ,0)

a tbN x
G x f t ea bN x


 

 
 (4) 

The particle density distribution is an exponential increase for a>1 or 
a decay for a<1. These trends are consistent with May’s mathematical 
analysis of population growth leading to divergence or decay [8, 9]. 
If b=0, Eq (4) becomes: 

( 1) /
( , ) ( , 0)

a t
N x t N x e


   (5) 

If a=1, the Eq (3) solution is a decaying time profile: 
( ,0)

( , )
1 ( / ) ( ,0)

N x
N x t bt N x




 (5a) 

The spatial distributions of particles in unidimensional motion in 
density gradients are due to temperature gradients arising from the 

TABLE 2  

Variations in Standard Rank Number (SRN) and  Modified Rank Number (MRN) with respect to order and position differences for SM

paticles with mass 

Group  SM Generation Number  Order Comparision  Position Difference  
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Figure 3) Correlation between logarithm lepton and quark mass (MeV/c2) 
with Modified Rank Number (MRN): (red) leptons; (green) quarks. 
Black line fitted to leptons and quarks, gradient=1.15 (R=0.96) 

This predicates a thermal flow mechanism involving mutual 
interactions between individual free leptons and free quarks, which is 
crucial to understanding why the masses are as they are. So, an 
interaction mechanism due to thermal flow in free particles 
fundamentally effects quantum mechanics. The 12 free particle group 
is a harmonic relationship, requiring a precise mechanism 
to explain the observed masses.  
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motion of particles as dissipative systems [14]. For a 1D-ensemble of 
particles, characterised by size and energy and each separated by 
a mean distance from its nearest neighbor, the rate equation for 
the particle population, Ni(x, t), (particles.cm-3) is given by the net rate 
of particles hopping into, and out of, the location, i: 

( , )
( , ) ( , )i

ij i ji j
j j

N x t
P N x t P N x tt


 


    (6) 

where Pij=probability of a particle migrating from location i to j. For a 
1D-flow of particles passing through a virtual volume element, 
dV=Adx (Figure 4), the net 

Figure 4) Virtual volume, dV=Adx, for hopping particle transport equation 
lc p and parameter derivation in a 1-D space. The incident particle 
flux=Je(x, t) (Particles.cm-2, s-1) 

particle flux, Je (x,t) , [particles.cm-2.s-1] across cross-sectional area, A,
is: 

[ ( , ) ( , )]e e eA J x t J x dx t dt Jx (  , t) dVdt


  


 (7) 

The net rate of particles entering space, dV, in time, dt, is found from 
Eqs (6) & (7): 

( , ) ( , )i eN x t J x t
t x

 


 
 (8) 

where the right-hand side represents particles entering and/or 
leaving the volume without any local loss (sink) or generation 
(source). 
So from Eqs (6) & (8): 

( , )
( , ) ( , )e

ij i ji j
j j

J x t
P N x t P N x tt


 


   (9) 

Nearest Neighbour (NN) approximation simplifies the Eq 

(9) summation, to show particle flux kinetics in a 1D-space (Figure 5).

In a particle gradient, the net flux, Je (x, t), into space plane, i,

depends on fluxes in and out of, NN planes, i+1, and, i-1. The

fluxes are for 2D-densities, n(i+1) , and, n(i-1) [particles.cm-2]:

Figure 5) Particle kinetic flux into a virtual plane (i) from adjacent planes 

(i-1) and (I+1) in two directions (positive and negative) in a 1-D space. 

The particle density gradient ; ( , )iE N N N x t   

1, 1 1

1
J ( , ) ( , )2i in i ix x t n x x t P
  

    

1, 1 1

1
J ( , ) ( , )2i in i ix x t n x x t P
  

      (10) 

Factor ½ denotes the equal probabilities that a particle located at 
virtual plane, i, hops instantaneously into virtual plane, i+1 (right), 
and, i-1 (left), in 1D-space. Invoking particle flux conservation, the 
probability rate, as a hop-attempt frequency, is: 

1

1 1

1
[S ];i i i R

P P P  




 
      (11) 

with R representing a particle residence time within its spatial 
coordinate. The net particle flux across the virtual area, A, at x is: 

1, 1,( , ) ( , ) ( , )i i in i inJ x t J x x t J x x t
 

     

A first-order Taylor expansion of n(i+1) and n(i-1) in Eq (10) yields, to 

order x [particles.cm-2.s-1]: 

( , )( , ) i
i

n x tJ x t x
x


 

  
 

 (13) 

Given that ni (x,t) / x=Ni (x,t) [particles.cm-2], a characteristic
particle velocity is defined as: 

u p R

x



   (14) 

This enables a physical interpretation of the particle kinetics in 
an interacting ensemble. Grossing defined quantum potential, up,
to mean the “osmotic velocity” arising from the momentum-
fluctuating component of particle mass, mp [15]. This is 
responsible for the dissipation of energy as thermal outflow [14]. If 
in Eq (13) subscript, i, is replaced with subscript, p, the particle 
diffusive flux is:  

2( , )( , ) ;p p R

LN x tJ x t D
x 

 
  

 
 (15) 

where L=x= the effective distance travelled by a particle in time, R. 
Incorporating Eq (3) into Eq (8) which is the net particle 
number entering the virtual space, dV=Adx, in time, dt, including 
particle loss due to energy dissipation in, dV, yields: 

( , )( , ) ( , )
[( 1) ( , )]

pJ x tN x t N x t
a bN x tt x 


   

 
  (16) 

Assuming thermal conversion and dissipation is due to momentum 
fluctuations, the particle density losses act as the non-equilibrium 
thermodynamic source as described in the vacuum fluctuation 
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(12)

x
..
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theorem [17]. 

Finally, inserting Eq (15) describing particle diffusive flux into 

Eq (16) and equating the characteristic hopping and residence 

times, =R, gives the non-linear logistic particle diffusion 

  (17) 

Non-linear particle density diffusion equation solutions by diffusion 
wave harmonic spectra 
Solutions to Eq (17) depend on the physical process kinetics for a 
given particle ensemble, especially explaining how thermal and 
particle diffusion waves or oscillations generate harmonic patterns 
resulting in the observed particle masses. Consider a “core” (basic or 
fundamental) quantum field initially without any thermal or particle 
activities, then harmonic thermal energy dissipation occurs if the core 
quantum field is treated as a single-atom heat engine occluding 
resonant thermal energy which increases the local environment’s 
entropy [18-20]. Grossing also confirmed that single particles acted as 
periodic thermal dissipative systems in a non-equilibrium steady state 
by a “hidden” energy source [17]. The energy or heat source 
maintains heat exchange between a particle and its environment as a 
dynamic non-equilibrium thermodynamic process [21, 22]. Grössing 
formulated a conventional diffusion equation for the particle density 
(a probability density) with particle diffusivity: 

2p p
D m (18)

0

0

( , ) ( )
ik t

k
k

N x t n x e 





   (19) 

Each harmonic order must be solved separately, with the solution for 

the adjacent next lower order acting as the input to the next higher 
order. Inserting Eq (19) into Eq (17) yields an infinite series of 
harmonic order solutions, compacted as: 

 

2
2

0 0
02

0 0

( ) 1 1
( ) ( ) 0

ik t ik tk
k m

k p p m

d n x a bik n x e n x e
D Ddx

 
 

 

 

                     
 

The solution is a series of infinite coupled equations with each term 
set to zero while coupled to lower orders through the non-linear term. 

The particle diffusion length, ppL D  , for the dc terms when 

k=m=0 in Eq (20). Thus for only time-independent dc and 
fundamental (first harmonic) terms, the following equation is 
obtained: 

2
20

2 0 02 2

( ) 1
( ) ( ) 0

p p

d n x a bn x n x
dx L L

   
   

     
   

 (21) 

The solution is obtained by multiplying all terms by 
dn0(x)/dx, integrating, and using standard tables [24]: 

00

0 0 0

1
1 ; 0

A Bn Adn n AAn A Bn A Bn A

 
   

    
  (22) 

A>0 leads to a>1 satisfying the non-extinction condition of the
particles’ population which is 1< a<4 Eqs (2 & 17); [8, 9].

The exact solution for the time-independent particle distribution, 

with the boundary condition 
0

(0)n N is: 

   (23) 

At an infinite distance away from the thermal source, the particle 
distribution is: 

0

1
( ) 3

an
b

 
   

 
 (23a) 

This is a non-zero, uniform (homogeneous) particle density directly 
linked to the environment’s background thermal energy. Under these 
conditions, thermophoresis, a phenomenon causing particle-to-
particle attraction, is established. This is crucial to maintaining 
the particles together as an interacting ensemble [25-32]. 

From Eq (20) when  the fundamental 

modulation term

 (24) 

and rearranging: 

 (25) 

Eq (25) has no analytical solutions. However, 
1 2

03( 1)/a bN   in the 

Eq (23) denominator is small since N0 at the origin is large [32]. 
When we set 

( ; )0

1 0 10
( ; )

u x
n x N e





 and use the WKBJ methods an

approximate equation is obtained: 

2

2

 N (x,t ) 1 ) )
[( 1) )] 0

p p

N (x,t
a bN (x, tD tx D 

N (x,t
    



(20)

mp=particle mass; E=ħ  is the particle wave energy which gives rise to
the fluctuating osmotic velocity. He showed also that the Schrödinger 
wave equation is derived from classical physics as well as from 
conventional quantum mechanical principles. However, the analogy 
with propagating wave fields is only for mathematical convenience [18]. 
When treated with eigenvalue equation methods, thermal waves cannot 
sustain spatially propagating eigen function solutions. These solutions 
are inconsistent with spatial damping, a hallmark of diffusion wave 
processes, due to leaky modes which result in the localisation of such 
fields within a diffusion length. Grossing did not connect the role of 
particle masses with fluctuating momentum to thermal wave evolution 
under equilibrium or dynamic steady state conditions. Similar caveats 
apply to other similar models [21-23]. The conversion of particle wave 
energy to thermal diffusion wave energy occurs when heat from a 
thermal source excites a particle. Then the particle acts as a heat engine 
producing oscillations at its mass resonance frequency. This mechanism 
dissipates energy as thermal oscillations, increasing the entropy of the 
surrounding environment [17, 20]. Internal particle energy conversion 
to thermal diffusion waves is a two-step process. Firstly, Eq (17) solves 
the spectrum of particle distributions obeying the non-linear logistic 
particle density diffusion equation. Secondly, the thermal content of 
each distribution is derived from associated thermal wave distribution 
fields. 
From Eq (17) time periodic solutions are determined by introducing a 
Fourier series at a fundamental oscillation angular frequency, ω 0 , and its 

harmonics: 

20 1 2

0

3(a1)
(x)

3(a1)
1 1 exp 1(  

  a x L )

n

b


   




p 



 bN   

2
1 0

2 1 0 0 1 0

(x; ) 1  a 1
(x;n  )    (x) (x; ) 0

p
p

d n  2b n nDdx  D 


 

 

  i0 
 

 

1 0n (0; ).

2
1 0

 ) i0 0

(x; ) 1

1 0
 0

p

d n
dx L

  2bn (x) n (x; ) 2 2 (a1

1 1 0
(x,t )  n (x; )

 0i t
N e

22
2

0
2 0

(x;0 ) du ( x; )
   (k x; ) 0;

d u
dx




 
 dx 
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can be described using particle density energy sources and 
thermal diffusivity, DT=Dp [Eq (18)]. On this basis: 

2

2

 T (x,t ) 1 )
CEN x( , )t

p D tx
T (x,t




 (29) 

and substituting Eq (19) into Eq (29)’s

source terms produces: 

 (30) 

This is the complete thermal diffusion wave spectrum of particle 
ensemble temperatures. Therefore, for all orders of k, the associated 
thermal diffusion wave equation is: 

 (31) 

and each spatial component of the temperature spectrum is related 
to the full temperature field of harmonic, k , by: 

0
(x, t ) (x; ) ; 0, 1, 2, ..

ik0t

k k kT (x)e k      (32) 

solution {Eq (23)}. Since N0 is large, then 
1 2

3(a1)
  1

 

bN0  

 

Taking the diffusivity of particles with mass, mn, from Eq (18), then 
the relationship between particle mass and thermal diffusion 
at location x=0 becomes: 

0

3
T (0)

nbm
CEQ 

   (35) 

The temperature rise of particles with mass, mn, is related to the 
thermal energy, U, obtained from an external source or by conversion 
of a fraction of the internal energy: 

 (36) 

where cn=particle specific heat. 
Assuming several core particles are present in the 1D-space, then all 
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Eqs (27 & 28) show that the particle density distribution at the 
fundamental oscillation angular frequency,  behaves like a mass 
diffusion wave, decaying exponentially with increasing distance from 
the particle source. The decay profile depends on the diffusion 

ac( )

0 )(p
length, L  , and the particle hopping time constant, . There is

a phase lag (inertia) between the particle oscillation source and the 
mass diffusion wave propagation rate for angular frequencies,

. The spatial range of the particle dc diffusive distribution,

2

0 0 0

1
(x; ) [( 2 (x)]

p
k a bnL   1)  i    (26) 

Assuming |dk(x; ω0)/dx| << ∣k (x; ω0), the WKBJ solution is:
1 2

1 0 10
(x; ) N

 p ( ) x i0 0 t
n e 

k (0; ) 0 
(k x;0 )  

 (27) 

where the particle complex diffusion wave number is defined as: 

 (28) 

where N(x,t)=particle density, {Eq (19}; C=proportionality constant 

including the particle’s effective thermal conductivity or heat 

Lp, is different from, and independent of, the oscillating distributions 

at the fundamental frequency, f  /2    The spatial diffusion 
0

lengths of dc and fundamental frequency (and higher harmonics) 
decrease with decreasing hop time, not. τ, and particle diffusivity, Dp,
and increase with mass, m (Eq 18). The diffusion lengths also decrease 
with increasing oscillation frequency. The spatial separation of 
particles with different masses is enhanced by selective localisation 
based on different values of the product, ω0τ. Once the particles’ spatial
separation is greater than the separation required for a given ensemble, 
then the particles are in a steady state with fixed mass values. The 
stable PDW status only holds when the non-equilibrium dynamics of 
the thermodynamic framework reach a steady state. It does not mean 
that a given particle is stable or unchanging.

The non-linearity of the particle density diffusion equation Eq 

(17) generates solutions of diffusion wave harmonic spectra of all
orders with respect to particle mass-specific momentum
fluctuation frequencies. This introduces dc and ac particle diffusion
lengths that control their density distributions as follows:

 The dc particle diffusion lengths give rise to the
background densities and associated thermal contents. So
the best observations are an average of all particle diffusion
lengths resulting in an overall thermal content and
temperature of an environment, and;

 The ac particle diffusion lengths give rise to selective
spatial localisation and separation characteristics of each
particle mass.

1

0
 



Particle density energy dissipation through thermal diffusion waves 
In the quantum mechanical particle wave representation of spatial 
diffusion, the non-linear character of the logistic difference equation 
Eq (3),  leads to the diffusion equation Eq (17). In an ensemble this 
creates an infinite spectrum of particle densities at all harmonics of 
the fundamental oscillation frequency, including the time-
independent dc term. Regardless of the specific thermal dissipation 
mechanism in any environment, the thermodynamic quantum 
potential shows that thermal diffusion takes place at the rate of 
particle diffusion [15]. Therefore, particle-driven thermal diffusion 

The linearity of Eqs (29) and (31) means that non-linear elements 
enter only through the spectrum N(x, t) of particle diffusion waves. 

Two particular solutions for Eq (31) are explored as follows: the dc 
thermal diffusion (k=0); and, the fundamental thermal wave (k=1). 

Thermal diffusion wave solutions 
DC Thermal diffusion (k=0) solution 
Eq (31) is solved from the time-independent particle distribution 
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(x, t)N distribution; E=internal particle wave energy;  total 

density where pm c2 ;  = energy conversion 

energy 

particle energy into heat (non-radiative quantum yield). Letting 

coefficient for 

0

and, with a Taylor expansion of the denominator and retention 
of the first term, gives: 

2
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where (x)  T (x)  T ()
0 0 0

T and (x)  n (x) n ()
0 0 0

n and 

solving: 
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the masses and the thermal diffusion fields establish 
interacting ensembles based on the PDW hypothesis is 
complemented by the associated thermal wave (Thermon) 
henceforth redefined as Thermon-PDW Hypothesis. Consider 
several core particles within an ensemble, then for particles, n, of 
ensemble density, N(x,t), and mass, mn, harmonic oscillations at 
angular frequencies, k, occur [15]. If other particles with mass, 
mk, join the ensemble then similar harmonic decomposition 
excitation occurs. In the Grossing representation of 
momentum-mediated thermal dissipation, particles of mass, mk, 
dissipate energy: 

2
2

,

( ) 1
( ) ; 0, 1, 2, ...

2 2

k
d k k kk

p
E m u km


    (37) 

=nm0; n=1, 2,…. As a consequence of harmonic decomposition, the 

/mn nn k  , where kn=effective spring constant of the particle heat 

source, the relationship, mn=m0/n2, is easily deduced for constant, kn, 
at all resonance conditions. Within the Thermon-PDW model’s non-
linear wave oscillations, the particle mass relationships are resolved 
using Eqs (35 & 36). If all particles have identical specific heats based 
on equal quantum mechanical degrees of freedom, Eq (36) becomes: 

( )

0 0

0
0

T ;

1

n

n

U
m m m

mcm
m

    
 
 

 

 (38) 

In a heterogeneous ensemble, the mass m0 is either the smallest 
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particle's mass or the mass of the particle oscillating at the lowest 
resonant angular frequency, ω0. Introducing Eq (35) into Eq (38) 

gives a general relationship between particle mass, mn, and thermal 

diffusion field, T0, generated by dissipated heat transported 
through time-independent (steady state) particle diffusion:

( )

0
1 ( ) 1 n(3 CEQ / b) 1 n T

n

nn m      (39) 

From the momentum-mediated thermal dissipation representation 
and the integral mass relationship, Eq (39) becomes: 

0
1 ( ) 1 n(3 CEQ / b) 1 n(U/ cm ) ( 1); 1, 2, 3, ...nn m n n           (40) 

From the resonant frequency oscillation representation, Eq (40) yields 
the mass order relationship: 

0
1 ( ) 1 n(3 CEQ / b) 1 n(2 U/ cm ) 1 n(n); 1, 2, 3, ...nn m n     (41)

 (42) 

Using Eq (42) as the driving function, the Eq (31) solution is a 
combination of spatial thermal and particle density waves: 

(43)
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(43a) 

where: A is uniquely determined by the boundary condition  

1 10
(0) TT  at the particle’s location. Using Eq (28) for p, the 

solution for the fundamental thermal wave associated with the 
particle oscillation, is: 

2
10

1
(0) ; 1

1

PCEN L
T aa


  


 (44) 

Note that the i factors cancel out in the denominator 
2 2

0 0
( ) ( )P t    in Eq (43a) for a particle density diffusion length

particle fluctuating momentum component; uk=harmonic

fluctuation of the characteristic particle velocity {Eq (14)}. Oscillations 

at harmonic frequencies, n=n0 imply particle energies, En=nE0. 

Thermal harmonic oscillator characteristics are outlined later. 
Assuming similar particle velocity fluctuations - an assumption that is  
confirmed with the experimental data below - the proportional energy 

dissipation, En=nE0 from Eq (37) implies the mass relationship mn

fundamental oscillation of a particle of mass mn=nm0 is excited at n 

=n0, where 0=fundamental oscillation angular frequency of 
particle mass m0. Therefore, for an ensemble, all the particles 
oscillating at n include particles of mass mn oscillating at the 
fundamental frequency and particles of mass m0 oscillating at the nth 
harmonic. The former particle density always dominates since, as the 
Fourier coefficient nk(x) in Eq (19) shows, the harmonic 
decomposition magnitudes decrease rapidly with increasing 
oscillation frequency. Invoking the Parseval relation associated with 
the Fourier spectrum of Eq (19) ensures that the system’s total energy 
remains finite and equal to the initial value as a necessary condition. If 
the integral mass relationship, mn=nm0, is assumed, the Thermon-
PDW hypothesis predicts that ensemble particles oscillate and 
dissipate thermal energy at fundamental angular frequencies, 
coinciding with the harmonic multiples of the smallest mass 
fundamental frequency. The hypothesis does not claim that the same 
particles are always in a given location. But, there is always the same 
density of fixed mass particles in the environment. This density is 
precisely dependent on the particle diffusion amplitude and the 
thermal diffusion length, at a defined frequency. 
Conversely, for resonant harmonic oscillations excited by thermal 
absorption from fluctuating thermal sources, the higher resonant 
angular frequency oscillations are associated with the smaller masses 
[30,31]. In a simple classical mechanical oscillator model, in which  

In the expressions Eqs (40 & 41), integers, n, represent 
increasing mass orders, mn. For both relations, parameters in the 
first two terms on the right-hand side are considered 
constant and independent of mass order. The relationships 
involving dc (time-independent) thermal and particle diffusion 
distributions are derived from the entire harmonic spectrum 
of oscillations since this is imposed by Eq (17), that is, the linked 
non-linear logistic thermal and particle density diffusion 
wave equation. Independent experimental results for particle 
masses (Figure 1) support mass order relationships, as determined 
from Eq (41) [2]. In Eq (40) increasing mass order, n, is the 
same as SRN. The experimental ln-linear mass relationship is 
fully consistent with the theoretical momentum-mediated 
thermal dissipation assumptions of particle velocity, 
harmonic fluctuation, independence from the oscillation 
frequency as developed in Eq (1) through to Eq (41). So the 
prime conclusion is that the Thermon-PDW model defines the 
SM particle distribution. It is the quantum mechanism which 
explains the relative mass values and should signpost a way to 
obtain the necessary quantitative data to determine the absolute 
values.

Fundamental thermal wave solution (k=1) for eq (31) 

The thermal diffusion wave solution, given for k=1 by Eq (31) and 
for n1( ) by Eq (27), is derived as an integral with no analytical 

form. Since the exponential spatial profile of Eq (27) is the main, 

rapidly-ο)  decayincan be g factor, ignored. Thus the slow-decaying 
an approximate spatial analytical solution dependence, k:1/2 (  x  ;   )  

can be ignored. Thus an approximate analytical solution is:

1
Ae

pxxtT Be
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which controls the thermal diffusion length. In these circumstances, 
the resulting thermal wave expression {Eq (44)} becomes proportional 

to 
2

PL as in the dc term 
1

(0)T {Eq (35)}. Therefore, Lp emerges as 
the overall characteristic diffusion length for both 
thermal and particle diffusion processes. 

Further consideration of the thermal and particle diffusion 
wave equations 
Thermal and particle diffusion in a single particle in a static state. 
Hypothetically consider that random particle diffusion occurs in a 
single particle isolated from all adjacent particles. The combination of 
particle mass diffusion and random walk results in a stationary 
Gaussian spatial distribution of diffusion probability [26]. A similar 
conclusion is reached from a spatial 3D-diffusion model, but, for 
mathematical simplicity, a 1D approach is used, implying that the 
probability for net particle transport to a neighbouring spatial 
location=0, with Pi=v=0. From Eq (8), the net particle flux, Je, 
becomes a time independent constant as: 

( )
0

eJ x
x





 (45) 

This means that the probability maximum of finding the particle 
is localised always at the same peak position and is independent of 
the number of excursion forays. There are two consequences 
depending on the observer’s location. 
An “internal observer”, within the reference frame of the 
particle, perceives an increasing probability of the mass 
spreading into adjacent locations with successive forays [26]. The 
internal observer can register these changes as a change in time. 
Previously this was defined as intra-time [5]. Conversely for an 
“external observer”, the physical interpretation of Eq (45) is that a 
particle’s distribution is static and its position is stationary . An 
external observer is unable to register intra-time, which might be 
equally defined as “hidden universe time”. Assuming that a drift 
force acts on the single particle, then, as expected, the probability 
peak for the particle at a location changes. Even then, an 
internal observer registers hidden time passing, but an external 
observer, still without a frame of reference other than the particle 
itself, fails to measure time. 

The physical reality of a single particle’s diffusion and random walk is 
fully consistent with time independence as proposed by the Thermon-

PDW hypothesis and the residence time constant, R=1/=∞ {Eq 
(11)}. A static state particle exhibits no spatial transfer rate, up=0 {Eq 
(14)}, and thus no diffusion capability, Dp=0 {Eq (15)}. These 
conditions have important energetic consequences. If thermal 
dissipation from a single particle is momentum mediated, which is 
consistent with the experimental findings (Fig 1), Eq (37) 
immediately yields Ed,k = 0; k = 0, 1, 2, …. This means that there is 
total absence of mass and thermal oscillations at any and all 
modes, including the dc, fundamental and higher harmonics.  
The model contains within it the conditions for a mechanism 
which supports assumptions made for the inception of free particle 
mass and indeed the whole universe. 
The physical reality changes radically once a second particle emerges 
either in the same local environment as the first particle or arrives at 
the first particle’s location. In these circumstances the probability, Pi, 
is redefined as an attempt frequency 0 ≠ v for the particle position, i, 
to drift to a new position, (i ± 1), in relation to the first particle. It 
also means that the hidden time in the original single particle is 

L x 

revealed by particle drift. Both particles contribute to a net 

mass transfer giving meaning to residence time, R = 1/ {Eq 

(11)}, and defining particle diffusivity through  {Eq (15)}. 

Additional particles complete the diffusion formalism and, 
modifying the model for 3D-space, particle residence time 
eventually reaches a maximum, R, f, at a steady state corresponding 
to particle density above which all particle diffusion within the local 
environment containing the participating particles occurs with the 
same probabilistic time constant. Under these conditions an external 
observer measures steady state particle-to-particle diffusion, Dp>0 
{Eqs (17 & 18)}. This subsequently gives rise to momentum mediated 
thermal energy dissipation, diffusion and oscillation {Eqs (29 & 30) 
and Eq (38)]. If the same conditions apply in an environment which is 
the whole universe then the time measured is Universe Time (UT). 

Two particle diffusion and drift defines the onset of universal time 
Important quantum conditions drive thermal dissipation between two 
or more particles in adjacent locations, i and i ± 1 with a heat source. 
Coupled Thermon-PDW interactions establish a diffusive density 
leading to the onset of thermal oscillations and energy dissipation [27]. 
Fluctuation theorems show that macroscopic irreversibility arises 
from time-reversible microscopic dynamics [28]. For example, one 
irreversibility process known to generate thermal forces in particles, is 
diffusion by non-uniform random walk, enabled by Brownian motion 
randomness [28]. This can be seen in an ensemble of particles 
subjected to a non-Fickian diffusive flux. The superposition of 
diffusion and random walk becomes a Fickian flux {Eq (15)} with a 
temperature gradient produced by non-linear particle density and 
thermal diffusion wave oscillations. The combined mass and 
temperature gradient fields, first observed in fluid salt solutions, 
describe thermophoresis in fluids [29-31]. Under these conditions Eq 

(46) 

where DT=effective thermal diffusion coefficient [cm2.s-1.K-1]  and 

=temperature gradient between the ensemble’s particles. 

The non-linear particle density diffusion (Eq (17)) is now replaced by: 

 (47) 

The particles are affected by two forces: one due to the density 
gradient; and the other due to the temperature gradient (Figure 6a & 
6b). The forces act either in the same or opposite direction. 
By simplifying Eq (47) (approximately valid for linear and mild 
temperature gradients), UT appears when the non-linear term 

and the
2
T term are neglected. Under these conditions 

an analytical solution (analogous to the equation for charge drift in 
an electric field is [33].

(48) 
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(15) is replaced by the particle flux under thermal non-equilibrium in
1D-space:
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So, if a thermal gradient field is applied along the motion coordinate 
of ensemble particles, N0, the ensemble moves towards the low 
temperature end of the thermal field with a drift velocity of: 

 (49) 

The negative sign indicates that the drift motion is in a direction 
opposite to the thermal gradient (Figure 6). This is consistent with 
statistical thermodynamics as the frequency of particle hops increases 
with increasing thermal energy supplied by a heat source or particle 
thermal dissipation sources {Eq (23)}. At the same time, ensemble 
particles diffuse away, due to random motion, as from a heat source 

in isothermal equilibrium of  0T   (Figure 6b). 

For an external observer physically able to measure particles, the drift 
motion from one location to another due to a thermal gradient, is 
equivalent to UT. 

Figure 6) Particle subjected to two effective forces due to either density 

gradient or temperature gradient: (a) external force balances equivalent to 
gravitational forces; and (b) diffusive force random motion, such as, heat bath 
in isothermal equilibrium 

 (50) 

Thus Eq (50) gives the minimum time,
L

t , required for a particle at 

location, i , to travel a distance, x L , to the location of an adjacent 

particle, 1i  . 

Particle diffusion and non-uniform random walks, in a thermal 
gradient, gives rise to thermophoresis. This directly leads to the 
explicit, sequential emergence of time. This also applies to a two
particle (or more) ensemble {Eq (48)}, where N(x,t)=occupation 
probabilities (1,1), (2,0) or (0,2) between adjacent sites, i and 1i  . 

Thermal kinetic exchange between two (or more) particles explains an 
external observer’s perception of relative motion and so the passing of 
UT. Finally, note that the same physical analysis for Eq (48) also 
applies to a single particle. However, an external observer, lacking a 
frame of reference, cannot measure the variation of x for Eq (50) and 
is unaware of UT passing. 
Thermal dissipation calculations for the complete non-linear Eq (47) 
with mild temperature gradients, follows the same mathematical 

development of Eqs (19 to 28) and (30 to 31). This generates a zeroth 
order particle density equation to replace Eq (21) which, if b<<1, 
yields a diffusive term: 

Eq (50a) highlights the major role thermal gradients play in the 
spatial diffusion and particles’ drift by shortening the diffusion 

length, Pp
L D  , of a mixed thermal and particle diffusion drift 

length, LM, defined as 

2 2
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Where: 
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A similar mixed diffusion drift length prevails in thermal wave 
oscillations of interacting particles. Significantly, thermal diffusion 
wave fluctuations associated with particle density diffusion and 
random walk are energy dissipation mechanisms which lead to 
regional universal temperature gradients {Eqs (20 & 23)}. 
The emergence of UT is determined by the rate of the particles’ drift 
relative to their original locations. In turn this leads to particle 
distribution probability drift which for an external observer enables 
measurement of UT anywhere in the universe {Eq (50)}. 

Thermodynamic framework 
The new Thermon-PDW hypothesis drew our attention to 
important antecedents, reawakening earlier disagreements about 
quantum physics, especially its division into discrete fields or 
missing factor(s) [35]. Bohm concluded  of individual systems at a 
quantum level of accuracy” is possible [35]. De Broglie recognised the 
importance of the wave structure of matter about 100 years 
ago, eventually proposing that there were missing factors based 
on, !the hidden thermodynamics of particles” [21, 35]. These 
ideas were neglected for lack of evidence [36, 37]. The inability to 
conceive of the Thermon-PDW model was inevitable since, in De 
Broglie’s era, at least 10 free SM particles were unknown. De 
Broglie, Bohm and others were frustrated by their inability to 
demonstrate the proper (possibly overarching) significance of all 
thermodynamic principles within quantum physics. The wider 
scope of the Standard Model of particles may be fulfilled by the 
Thermon-PDW model which gives the complete thermodynamic 
framework. 

Pre-particle mass framework 
The model initially assumes an ensemble of pre-particles in a 1D-
space, but simply extends to 3D-ensembles in universe space. Non-
linear logistic thermal wave and classical particle diffusion wave 
solutions based on pre-particle momentum (given by particle 
hopping and residence times) are straightforward from Eqs (1 to 
17). As steady state non-linear conditions are established within an 
ensemble, the mechanism preserves the expected number of 
different SM particles with the observed relative masses. Local 
particle distribution changes, due to either particles entering or 
exiting an ensemble, are made to restore restored to the expected 
values by the imposed equilibrium state. Observations are presently 
limited in the absence of quantitative SM particle distribution frequ- 

The drift, ∆x , of the particle’s peak distribution is: 
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-encies, and experimental confirmation that pre-particles have
the same mass as their respective SM particle masses
determined by experimental. Observational data for
the 12 particle lepton and quark SM subgroup (excluding
bosons, photon & gluon) show that ln mass is linearly
correlated with SRN for the 12 particles, such that the masses
are a precise harmonic sequence (Figure 1), expressed within
the general framework of quantum probabilities [23]. This is
achieved by treating all pre-particles as thermal sources, either as heat
engines or recipients of external environmental heat, resulting
in the generation of diffusion-wave harmonic spectra for all
orders of all mass specific momentum fluctuation frequencies of
particles {Eqs (18 to 28)}. Alternatively, pre-particles generate
thermal diffusion waves giving an infinite spectrum of particle
density ensembles at all harmonics of the fundamental oscillation
frequency. Steady state thermal energy source conditions create a
stable mix of SM particles {Eqs (29 to 32)}. These conclusions come
from modelling physical reality in a local environment, but
there is no theoretical or physical impediment to extending the
local environment expectation to the whole universe, as noted in
several instances, with further implications discussed elsewhere
[38].

Thermophoresis 
The local stability of ensembles is of interest, particularly 
because mutual interactions between quantum fields assist the 
formation of harmonic thermal fields, which are obligatory for the 
inception and stability of SM particles. The particle-to-particle 
attraction mechanism is due to non-linear thermal diffusion 
waves and is termed “thermophoresis” by analogy to similar 
physical processes already observed in molecular systems (Figure 
6). From the initial stages of thermal flow to the maximum 
steady state level, thermophoresis increases from zero to the 
maximum level. Although the quantitative magnitude is unknown, 
we suggest it is a significant factor which is discussed elsewhere 
with other Thermon-PDW activity, particularly as a quantum 
mechanisms which contribute to gravity [38-40]. 

CONCLUSIONS 
Other conclusions and comments 

 The time-independent particle distribution solution {Eq
(23)} predicts ensembles containing pre-particles at
harmonic multiples of the lowest particle frequency {Eqs
(33) to (41)}. This guarantees that there is always a fixed,
finite particle density for particular diffusion waves and
thermal diffusion frequencies, {Eq. (40)}. Similarly,
resonant frequency thermal oscillations correlate directly
with increasing pre-particle mass. In both cases these
physical events arise from the complete harmonic
spectrum of oscillations imposed by the non-linear nature
of the fundamental hypothesis {Eq (17)}.

 The fundamental thermal wave solution {Eqs (42 to 44)}
directly correlates the model’s particle mass and thermal
wave energy dissipation with the experimentally observed
SRN {Eq (41)}. The theory supports the crucial role of
thermal diffusion waves as an efficient mass separation and
identification mechanism within an ensemble of different
pre-particles by particle dissipation energy, Ed, and mass

order across all harmonic thermal wave oscillation degrees 
of freedom available. The non-linear particle and thermal 
diffusion wave model of energy emission represents a 
standard harmonic series dividing the total particle density 
into a series of constituent densities, each oscillating at the 
fundamental angular frequency,  and higher harmonics,  
where n=2, 3, 4, … If the fundamental modulation 
frequency represents the particle wave fluctuation, from the 
rest energy En = mnc2 = nm0c2 = hc/λn and thus mn ∝ 1/ λn 
= n/λ0, then the harmonic ensemble consists of particle 

masses equal to integral multiples of the smallest mass m0. 

Alternatively for a mechanical resonance oscillation in a 
particle, the harmonic ensemble of particles resonate at 
integral multiples of the fundamental. The physical 
meaning is that a spatial network (distribution) of 
interparticle forces, Fn, forms with the effective spring 
constants linked to the weakest force, F0, such that  kn = 
n2k0 . The simultaneous operation of both kn mechanisms 

is also possible, so that an ensemble of particles, whose 
masses are integral multiples of a fundamental particle 
mass, oscillates thermally exactly as if they were an 
ensemble of one particle species, thermally oscillating at all 
harmonics of that mass. 

 Different SRN-harmonic correlations depend on
harmonics favouring either the dc field or the particles
excited at the fundamental frequency. This might explain
the different boson alignment compared with the other
elementary particles.

 The photon and gluon position appears anomalous since
they are massless. One possibility is that the photon
behaves as a photon gas which exerts radiation pressure on
matter. In this case the photon carries an effective mass
with its momentum and, in an oscillating thermal field,
behaves similarly to particles with mass. Further
reconciling the model with respect to quantum
electrodynamics and general relativity has not been
investigated to date. It has not passed unnoticed that the
model generates hidden time and that time may be
variable.

 Similarly the relationship with the Higgs boson has not
been explored. It is noted that the Higgs particle carries a
mass which may be derived from the Thermon-PDW
mechanism. If the Higgs particle does perfuse the entire
universe, the Higgs field would ensure transmission of
thermal and diffusion waves throughout the universe.
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