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RESEARCH 

Translational shape-invariance of radial Jacobi-reference 
potential under two sequential Darboux transformations 

Gregory Natanson 

 
 

INTRODUCTION  
alf a century ago the author (Natanzon GA. 1978-79) performed 
a detailed analysis of the radial (‘implicit’) potential exactly 

solvable via a superposition of two hypergeometric series and in 
particular presented the analytical formulas for both Jost function and 
S-matrix element for the s-wave scattering.  The potential was re-
discovered by Ginocchio (1985) in a slightly different context a decade 
later.  Namely he constructed a solvable radial potential with a varying 
mass which as immediately pointed to by Wu (1985; Wu Je et al 1989) 
turned into our potential in the constant-mass limit.  In Appendix A 
we present the direct proof that the formula obtained by Ginocchio for 
the S-matrix element precisely agrees with the one derived in [1-5].  

The next important development was made by (Lévai et al 1997) who 
applied double-step Darboux Transformations (DTs) to Ginocchio’s 
potential re-written in a modified form (see Appendix B below for 
details). They took advantage of the analytical formulas for the 
scattering amplitudes of the s-wave scattering in the ‘modified’ 
Ginocchio potential and its double-step Darboux transforms (DTs) to 
demonstrate the phase-equivalence of the two potentials for certain 
combinations of the two seed functions used for the given Darboux-
Crum transformation [6,7]. 

The main purpose of this publication is to show that the exactly-
solvable radial potential in question (while not being ‘shape-invariant’ 
in Gendenshtein’s terms (1983) preserves its form under specially 
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ABSTRACT 
The paper represents a further development of the mathematical 

formalism relating the conventional quantum-mechanical theory of the 

exactly-solvable translationally shape-invariant (TSI) potentials to the 

preservation of the form of the corresponding Rational Canonical 

Sturm-Liouville Equation (RCSLE) under the Darboux deformation of 

its Liouville potential using the so-called ’basic’ solution as the 

Transformation Function (TF).  Since these ‘Liouville-Darboux 

transformations’ (as we term them) simply shift one of the parameters by 

1 we refer to this feature of the mentioned RCSLE as its ‘translational 

form-invariance’. 

The main purpose of this paper is to demonstrate that, by analogy with 

its TSI limit represented by the hyperbolic Pöschl-Teller potential, the 

radial potential exactly solvable via hypergeometric functions (termed 

‘radial Jacobi-reference potential in the paper) has two pairs of quasi-

rational solutions such that their analytical continuations do not have 

zeros at any regular point in the complex plane.  It is essential that the 

Characteristic Exponents (ChExps) of these four ‘basic’ solutions for the 

pole at the origin differ only by sign and can be then grouped into the 

pairs via the requirement that the paired solutions share the same 

characteristic exponent for the mentioned singularity.  Each pair of the 

basic solutions is then used as seed functions for the second-order 

Darboux-Crum Transformation (DCT) of the radial potential in 

question.  It is proven that both transformations simply shift by 2 the 

exponent difference for the pole of the RCSLE at the origin while keeping 

two other parameters unchanged. In other words, the DCT in question 

brings us back to the initial radial potential by either deleting the ground-

energy state or inserting a new one.  

The important novel element of our approach is the conversion of the 

Crum Wronskian (CW) to the Krein Determinant (KD) which makes it 

possible to express the eigenfunctions of the transformed RCSLE in terms 

of polynomial solutions of a Heine-type differential equation with degree-

dependent exponential parameters.  As an illustration of the Darboux-

Crum-Krein theory of CSLEs put forward by the author we make use of 

the Krein representation to explicitly confirm that the state-deleting DCT 

of the Jost solution simply shifts the third parameter of the corresponding 

hypergeometric series by 2 as the direct consequence of the translational 

form-invariance of the RCSLE under the DCT in question.   

Key Words: Canonical Sturm-Liouville equation; Liouville transformation; 

translationally shape-invariant potential; Darboux-Crum-Krein theory; Jost 

solution 
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chosen sequential DTs.  To do it we first need to shift the focus back 
to the canonical Sturm-Liouville Equation (CSLE) used to generate the 
potential of our interest via the Liouville transformation [8,9].   
We (Natanson G; 2016) term this CSLE as ‘Jacobi-reference’ ( RefJ ) 

since its eigenfunctions are expressible in terms of classical Jacobi 
polynomials with degree-dependent indexes assuming that the 
corresponding spectral problem is formulated on the finite interval 
[10,11, 1, 2]. The cornerstone of our approach is the characterization 
of the meromorphic density function 

1
K

K 2 2
T [z][z; ]

4z (1 z)
=

−
ρ T (K=0, 1, or 2)            (1) 

by the orders of zeros of its polynomial numerator of the degree K at 

the poles of the RefJ CSLE in the finite plane. As discussed in detail 

(Natanson G; 2021) in the CSLE is ‘translationally form-invariant’ 
(TFI) iff the mentioned ‘tangent’ polynomial (TP) KT [z]  has zeros 

only at the CSLE poles 0 and 1 [12].  This is the necessary and sufficient 
condition for the corresponding Liouville potential to become ‘shape-
invariant’ in the conventional sense [8].    

The concept of the ‘translational form-invariance’ put forward 
(Natanson G; 2021) in is essentially based on the existence of the ‘basic’ 
solutions  

0 1
1 1 1 1; ,0 ; ,02 2 2 21 ,0[z]:= z (1 z)λ + λ +

φ −t t
t    (2) 

such that their analytical continuations into the complex plane remain 
finite at any regular point of the RefJ  CSLE.  We say that the CSLE 

is TFI if it preserves its form under the so-called (Schnizer WA, et al 
1993-1994) generalized Darboux’ transformations such that the 
(Rudyak BV 1986) function, 

1 1 1
1

,0 K ,0[z]:= [z; ] / [z]∗ −φ φt tTρ    (3) 

is a solution of the transformed CSLE.  It can be shown that these 
transformations of the CSLE are equivalent to the following three-step 
operation: 

1. the Liouville transformation of the generic CSLE to the 
Schrödinger equation via the change of variable z(x) 
satisfying the first-order Ordinary Differential Equation 
(ODE): 

1
21)K K Kz (x; [z(x; ); ]−′ = ρT T T    (4) 

where prime denotes the derivative with respect to x; 

2. the Darboux deformation of the resultant Liouville 
potential with the Transformation Function (TF):   

1
21 1,0 K K K ,0 K(x; ) : [z(x; ); ] [z(x; )];−

= φψ ρT T T Tt t  

(5) 

3. the reverse Liouville transformation of the Schrödinger 
equation with the deformed potential to the new CSLE with 
the unchanged density function 1 K[z; ]Tρ . 

We (Natanson G, 2016) suggested to refer to this operation as 
"Liouville-Darboux transformation” (LDT), keeping in mind that 
various authors give the term ‘generalized Darboux transformation’ 
completely different meanings [16]. 

Let ir be the order of the TP zero at the singular point r = 0 or 1.  Then 
the i0,i1;K- RefJ  CSLE is TFI iff  

i0 + i1 = K.   (6) 
Assuming (Natanzon GA, 1971) that all the Liouville transformations 
are performed on the finite interval (0, 1), there are the four TFI CSLEs 
associated with the four TSI potentials. Namely the Rosen-Morse (RM) 
potential (Rosen N, 1932) (the only TSI potential on the line) can be 
obtained by applying the Liouville transformation to the 0,0;0- RefJ  

CSLE [17].   

There are two radial TSI potentials: the Manning-Rosen (MR) and 
hyperbolic Poschl-Teller (h-PT) potentials (Manning MF et al; Poschl G 
et al ;1933) which can be generated by applying the Liouville 

transformations to the 2,0;2- RefJ and 1,0;1- RefJ  CSLEs 

accordingly [18,19].   

And finally, the trigonometric Poschl-Teller (t-PT) potential (Poschl G 
et al ;1933) (originally discussed by Darboux et along before the birth 
of quantum mechanics) is obtained by the Liouville transformation 
applied to the 1,1;2- RefJ CSLE with the so-called (Natanson G., 

2017-19) ‘simple-pole’ density function [20-22].  Two other TSI CSLEs 
(0,1;1- and 0,2;2- RefJ in our classification scheme) can be obtained 

from the mentioned 1,0;1- and 2,2;0- RefJ CSLEs respectively by the 

reflection z→1-z which maps the interval [0, 1] onto itself (Ishkhanyan 
A, 2016) and thereby result in the same (h-PT and accordingly MR) TSI 
potentials after the corresponding Liouville transformations [23]. 

As recently advocated by Ishkhanyan and Krainov one can use the same 

0,0;0- RefJ  CSLE for the pair of the Poschl-Teller potentials and the 

1,0;1- RefJ CSLE for two other potentials (often referred to (Newton 

RG, 1966) as potentials of the Eckart-class); however, the 
corresponding Liouville transformations should be also done on the 

positive infinite interval (1, +∞) in both cases so we again come to the 
four (not two (Ishkhanyan AM, 2018) Liouville potentials [23,25].  

It is worth mentioning that both changes of variable z(x) = -sinh2 x or 

z(x) = cosh2 x in the 1,1;2- RefJ CSLE on the negative and positive 

infinite intervals originally introduced in (Dabrowska JW et al, 1988; 
Dutt R et al, 1988; Cooper F et al, 1987) to generate the h-PT potential 
turns out to be preferable since the corresponding eigenfunctions 
become expressible in terms of a finite orthogonal set of Romanovski-
Jacobi-polynomials ( Romanovski VI, 1929; Lesky PA, 1995-1996) 
which can be then used for constructing finite Exceptional Orthogonal 
Polynomial (EOP) sequences [32-35, 22]. 

For the pair of the Eckart-class potentials the quantization scheme 
using the same 0,0;0- RefJ CSLE has been utilized by Quesne 2012; 

who, in following (Cooper F 1987-2001), misleadingly referred to the 
radial Manning-Rosen potential as ‘Eckart’ potential [36,37]. It should 
be reminded to the reader that the potential introduced by Eckart, 
1930 is nothing but Bose AK, 1964 another form of the RM potential 

obtained by applying the Liouville transformation to the 0,2;2- RefJ
CSLE on the negative semi-axis [38,39]. 
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It was originally proven in (Natanson G, 2011) and then more 
scrupulously analyzed in (Natanson G, 2016) that the ground-energy 
Eigen function of the RefJ CSLE for any TP with a positive 

discriminant is accompanied by three other basic solutions such that 
their analytical continuations into the complex plane remain finite at 
any regular point of the RefJ CSLE [10, 40].  In particular this is true 

for the TSI 1,1;2-and 1,0;1- RefJ  CSLEs associated with the t- and h-

PT potentials. As a result, the Darboux-Crum transforms (CTs) of these 
potentials form the net specified by two series of Maya diagrams [41].  

On other hand the TPs for the 0,0;0- and 2,0;2- RefJ CSLEs 

associated with the TSI potentials of the Eckart class have the zero 
discriminants so the DC sT of these potentials form the net 

unambiguously specified by a single series of Maya diagrams [12]. 

As mentioned above the main purpose of this paper is to prove that 
the non-TFI 1,0;2- RefJ CSLE preserves its form under the Darboux-

Crum transformations (DCTs) using as their seed functions two 
different pairs of the basic solutions. Though two sequential LDTs 
formally applied to the CSLE has been already discussed in (Schnizer 
WA et al ;1993-94) we refer the reader to Leeb’s paper [13,14,42].  

Where these double-step DTs were interpreted as an extension of the 
Darboux-Crum-Krein theory of SLEs; though mentioning Krein’s 
name in this connection in both (Rudyak BV et al;1987) and (Gómez-
Ullate D et al 2011) was an overkill.  The distinction between the Crum 
Wronskian (CW) and the Krein determinant (KD) [15, 41, 43, 44]. 
Arises only for the CW of more than two seed solutions of the CSLE 
in question and Leeb never discussed the solutions of the ‘double-step’ 
SLEs which indeed require the computation of the CW of three seed 
functions. 

To our knowledge, the rigorous extension of Krein’s work to the theory 
of the DCTs of CSLEs was first formulated in our works [45, 16]. It 
was shown that the CW of seed solutions of a CSLE and the 
corresponding KD differ by either a half-integer or integer power of the 
density function (see Appendix C below for details).  As expected, this 
factor disappears for the Schrödinger equation since the density 
function is identically equal to 1.  

As illuminated in Appendix D the crucial difference between the CW 
and KD representations of reference polynomial fractions (RefPFs) and 
solutions of the corresponding CSLEs is that all the KDs are regular at 
the TP zeros for any even number of seed functions.  Another 
advantage of the Krein representation is that the KD does not contain 
higher-order derivatives of seed solutions and as a result can be easily 
expressed in terms of the so-called ‘polynomial determinants’ (PDs). As 
proven in (Natanson G., 2018) (See also G. Natanson, 2023) for the 
more recent application of our formalism), the latter polynomials in 
the general case of 0,0;2- RefJ  CSLE obey the Heine-type differential 

equations [46-49]. With the exponent parameters dependent on 
polynomial degrees. 

The crucial difference of the 1,0;2- RefJ  CSLE of our current interest, 

compared with the general case is that the exponent difference 

(ExpDiff) for the pole at the origin is energy-independent and as a 
result, it is shifted by each LDT. As a direct consequence of this 
anomaly PDs may vanish at z=0 so one first needs to remove the 
corresponding integer power of z to get a polynomial obeying the 
Heine-type differential equation. 

Radial Schrödinger equation with general solution expressible in 
terms of a superposition of two hypergeometric series 
It was demonstrated in that the general potential exactly solvable in 
terms of hypergeometric series has the form [11]: 

1 o o 2 1 2 o o 2V(x; , ; ) V[z(x; ); , ; ]λ µ ≡ λ µ


T T T  

2 o 12 1 2 o o 2[z (x; )] I [z(x; ); , ] {z, x}−′= − λ µT T    (7) 

with 

2 2 2
o o o o

1 o o 2 2
1 11I [z; , ]

4z 4(1 z) 4z(1 z)

−λ µ −λ +
λ µ = + +

− −
    (8) 

and the symbolic expression {z, x} standing for the RefJ PF of the 

CSLE 

1 K K
2

o
1 o o 1 o o2

d I [z ; , ] [z; ] [z ; , ; ; ] 0
dz

  + λ µ + ε Φ λ µ ε = 
  

T Tρ  

and the Schwarzian derivative [50, 39].   The energy measurement 
point was chosen in such a way that the 0,0;2- RefJ  potential in 

question vanishes at the limit x →∞ which was achieved by setting to 
0 the zero-energy ExpDiff for the pole of CSLE at z =1.   

If the free term of the TP is equal to 0 then the density function in 
question has a single pole at the origin: 

2
a z b[z;a, b]

4z(1 z)

+
=

−






ρ ( b 0)>


   (10) 

and the one-dimensional (1D) potential (7) turns into the radial 1,0;2-

RefJ  potential with the centrifugal barrier at the origin,  

o o 1 o oV(r; , ;a, b) V[z(r;a, b); , ;a, b]λ µ ≡ λ µ
         

 

 

2 o 11 o o 2[z (r;a, b)] I [z(r;a, b); , ] {z, r}−′= − λ µ
      



   (11) 

where the change of variable z = z(r;a, b)
   is determined by ODE (4) 

with density function (10).  (The MR potential associated with the 

limiting case b 0=
 requires special consideration.)   

The corresponding RefPF o
1 o oI [z ; , ]λ µ

 



is defined via general 

formula (8), with the symbols oλ  and oµ


 used instead of oλ  and 

oµ  which are preserved by us for the RefJ potentials on the line 

[10]. 
ODE (4) thus takes form: 

2 z(1 z)
z (r;a, b)

a z b
−

′ =
+

 

  

 

                 (12) 

(with prime again standing for the derivative with respect to r) which 
is solved under the boundary condition 

z(0;a, b) 0=
  

                                  (13) 

In particular [1, 2] radial potential (9) turns into the h-PT potential if 
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𝑎𝑎
→=0 (K=1). 
Setting 

1 2c : T [1] a b= = +
 

                         (14) 

we can represent the change of variable r[z]
  as the sum of the two 

integrals  

1 2r[z] [z] [z]= +
  

r r                        (15) 

where 
z

1 11 11 1 12 2
20

2c / (1 z) c adz[z] : c c
b(1 z) T [z]

− − −
= =

−∫


 





arcoshr
(16) 

and 

z
12 2

0
1

2

1
2

dz[z] : a
z(a z b )

| a | (1 2 | a |z / b) for a 0,

a (1+2a z / b) for a 0.

arccos

arccosh

= − =
+

 − <


− >



∫


 

 

   

  


r
    (17) 

The Schwarzian derivative in question  

22

2
2(a b) z b b2 2(1 z) 5{z r} a

z(1 z) 4 z(a z b)z(a z b) (a z b)

 + −−
, = − − − − 

− + + +  

    

 

    

     

 (18) 

can be directly obtained from the general formula derived in by setting 
the free term and discriminant of the TP to 0 and  

2
T b∆ ≡
 

           (19) 

Respectively [11].  Re-writing (18) as 

( )22

2 3
a (1 z) a z 6b2a (1 z)3(1 z) 2{z r}

2z(a z b) a z b (a z b) 2(a z b)

− +−−
, = − − + −

+ + + +

   
 



           

          (20) 

we can represent the given radial potential as  
2 1o 4 1o o o2

( )(1 z)
V[z; , ;a, b] V[z; , ;a, b]

z(a z b)
λ − −

λ µ = + µ
+



       

 

  

            (21) 

where the second term in the sum represents the radial potential with 
the zero centrifugal barrier 

( )2 21 o o o2 2
a(1 z) a z 6ba1 zV[z; , ;a, b]

a z b az b 4(a z b)

 − +−
µ = λ −µ − + 

+ + + 

   
 



   

 

    

 

  (22) 

As originally demonstrated by the author the reflection of the latter 
potential at the origin results in the symmetric potential re-discovered 
by Ginocchio [11, 49]. A decade later.  In the following paper 
Ginocchio also constructed a solvable radial potential with a varying 
mass which turns into radial potential (21) in the constant-mass limit 
[3-5]. 

By choosing coefficient (14) equal to 1 we can represent density 
function (10) as 

1 2
z 1(z; )

4z(1 z)
κ + − κ

κ =
−







 

ρ                         (23) 

Where 

1: a / cκ =


                                             (24) 

We require that the simple zero of density function (23), 

Tz ( ) 1 1/κ = − κ


                                (25) 

lies outside the interval [0, 1].  This requirement holds iff κ  < 1, 

namely, 

Tz ( ) 0κ <


 for 0 1≤ κ < , 

Tz ( ) 1κ >


 for 0κ < .           (26) 

(For 0κ =  and 1κ =  the radial RefJ potential turns into the h-PT and 

MR potentials respectively.) 
The Principal Frobenius Solutions (PFS) near the origin can be 
represented for negative energies as 

1 o2
1

21 0 o o[z; , ; ; ] z(1 z) z (1 z)
− −ελ

Φ λ µ κ ε = − − ×

     



 

o o o o oF ( , ; ; | |) , ( , ; ; | |); 1;z[ ],α λ µ κ − ε β λ µ κ − ε λ +
  

 

           

(27) 

where  o o( , ; ; )α λ µ κ Ξ
 



 and o o( , ; ; )β λ µ κ Ξ


 

 are two roots of 

the indicial equation 

( )22 2 21o o o4X ( 1)X 1 ( ; ) 0− λ + Ξ + + λ + Ξ + −µ µ κΞ =
 



  

(28) 
for the pole of the CSLE at infinity, with 

2
o o( ; ) :µ µ δ = µ + δ


                        (29) 

i.e., 

o o o o o( , ; ; ) ( , ; ; ) 1.α λ µ κ Ξ +β λ µ κ Ξ = λ + Ξ +
   

  

         (30) 

Also [11] 

2
o o o o o( , ; ; ) ( , ; ; ) ( ; )β λ µ κ Ξ −α λ µ κ Ξ = µ µ κΞ
  

   

    (31) 

if we choose  

o o o o( , ; ; ) ( , ; ; )α λ µ κ Ξ < β λ µ κ Ξ
  

  

           (32) 

Combining (30) and (31) one finds 

2
o o o o1( , ; ; ) [ 1 ( ; )],2α λ µ κ Ξ = λ + Ξ + −µ µ κΞ

  

 

 

2
o o o o1( , ; ; ) [ 1 ( ; )]2β λ µ κ Ξ = λ + Ξ + +µ µ κΞ
 

  

  

(33) 
and therefore 

o o o o
2 2 21 ( )o o4

( , ; ; ) ( , ; ; )

1 ( ; )[ ]

α λ µ κ Ξ β λ µ κ Ξ =

λ +Ξ + −µ µ κΞ

  

  





  (34) 

Note that the sign of the parameter Ξ = − −ε  in the right-hand side 

of (30) is selected in such a way that the corresponding hypergeometric 

function remains finite at both quantization ends 0 and 1 unless ε 
coincides with an eigenvalue of the given RefJ CSLE.   

It is crucial that the ExpDiff for the pole of the 1,0;2- RefJ CSLE at 

the origin is energy- independent.  Extending condition (20) in to an 
arbitrary ‘quasi-rational’ solution (q-RS), as it has been already done in 
for the 0,0;2- RefJ CSLE, and setting [10,11]. 

c 0,0 =  2h 1 ,0 o+ = λ


 h 1,1 = −  2 f 1oµ = +


     (35) 

brings us to the q-RSs  

1 o21 m o 1; m[z; , ] z(1 z) z±± ±
λ

φ λ λ = − 



    



t t  

1 1; m o1; m2 ( , )
m(1 z) P (2z 1)±±
λ λλ

− −



 



 

tt  (36) 
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at the energies 

m 1 m
2
;± ±

ε = −λ
 





t t
    (37)  

where the exponent parameters 1; m±λ


 t  are given by one of the roots 

of the quadratic equations [51, 52]. 

1 m 1 m
2 2 2[ 2m 1]o o; ;± ±

λ ± λ + + = µ + κλ
  



 

t t
  (38) 

Here, in following our early study [53]. On DTs of centrifugal-barrier 
potentials (long before the birth of the SUSY quantum mechanics, the 
labels a  and b  are used to identify principal Frobenius solutions 

(PFSs) near the lower and upper ends of the quantization interval [0, 
1, 54-56], while the eigenfunctions and any q-RS irregular near both 
singular endpoints are specified by the labels c  and  d . 

Note that Sukumar in his pioneering study on SUSY partner of radial 
potentials a nearly decade later arranged these four types of TFs in a 
slightly different order: 

a  = T3, b  = T4, c  = T1, d  = T2, 

while Ancarani and Baye [57]. Replaced Sukumar’s original notations 
by the more mnemonic notations 

0 0
2 1 3 4T T ,T T , T T ,T T ,+ −= = = = = = = =+ − − +c d a b   (39) 

with the superscript indicating whether the ground-state energy is 
raised (+), lowered () or left unchanged under action of the DT using 
the given solution as the TF (while the subscript signifies whether the 
phase shift is increased -(+) or decreased (-) in this case.)  In Quesne’s 
[58, 59, 36].  

Present-time classification scheme of quasi-rational TFs the Cases I, II, 
and III correspond to the types a , b , and d  respectively.  An 

examination of q-RSs (36) reveals that 

or , or .= =+ − 

t a c t b d      (40) 

Representing quadratic equations (38) in the standard form 

1 ,m 1 ,m
2 2 2(1 ) 2( 2m 1) (2m 1 ) 0o o o; ;± ±

− κ λ + ±λ + + λ + + ± λ −µ =
   



 

t t
 

(41) 
we find that the linear coefficient of the quadratic equation for the q-

RSs , m+t  is necessarily positive and therefore the equation has two 
negative roots if both its leading coefficient and free term are positive.  

Since < 1κ  the potential may have at least n+1 bound energy levels iff 
the given quadratic equation has a negative free term  

2 2( 2n 1)o oµ > λ + +




                    (42) 

If condition (42) holds then the leading coefficient and free term of 

each quadratic equation (41) for the two q-RSs m−t  with m=n also 

have opposite signs so both quadratic equations have positive 
discriminants 

2 2( , ; ) 4[ (2n 1 ) (1 ) ]n o o o o∆ ±λ µ κ ≡ κ + ± λ + − κ µ
  

 

      (43) 

We thus proved that the roots of each quadratic equation must have 
opposite sign for m = n if the potential has at least n+1 bound energy 
levels and therefore that the eigenfunction ,nc  of the nth excited 

energy state is accompanied by the three q-RSs: ,na , ,nb , and ,nd
such that  

n
1 ( , ; ) 2n 1n o o o2( , ; ) 0,1; o o 1

∆ λ µ κ −λ − −
λ λ µ κ = >

− κ


 c  (44) 

n
1 ( , ; ) 2n 1n o o o2( , ; ) 01; o o 1

∆ λ µ κ + λ + +
λ λ µ κ = − <

− κ


 a  

And 

n
1 ( , ; ) 2n 1n o o o2( , ; ) 0o o1; 1

∆ −λ µ −λ + +
λ λ µ = − <

−
 

 



b
b

bd
 

n
1 ( , ; ) 2n 1n o o o2( , ; ) 0o o1; 1

∆ −λ µ κ + λ − −
λ λ µ κ = >

− κ


 b   (45) 

in agreement with the general theorem proven in for the density 
function formed by a TP with a positive discriminant [10].  
As a direct consequence of this proof we conclude that the 1,0;2- RefJ

CSLE has a quartet of basic solutions of distinct types a , b , c , and 

d  (n=0) if it has at least one solution normalizable with the weight 

(23). 

In principle any combination of the ground-energy eigenfunction 

, 0c and all the q-RSs of the types a or b  below the ground energy 

level can be used as seed functions to construct the DC net of the 
exactly solvable radial potentials.  In addition, one can add juxtaposed 
pairs of eigenfunctions based on the extension of the Adler theorem 
proven by us in for the 0,0;2- RefJ CSLE but easily extended to its 

counter-part with the energy-independent ExpDiff at the origin [46, 
60].   

In this paper we focus solely on the double-step DC transformations 

(DCTs) using the pair of the basic solutions , 0a  and , 0c or , 0b
and , 0d .   

While the first combination simply represents one of the first DCTs 
starting the aforementioned DC net, the combination , 0b and , 0d  is 

only admissible if the PFS of the CSLE near the upper singular 

endpoint at the energy ,0ε = ε
 b  lies  below the  q-RS , 0d , i.e., 

 ,0 ,0ε <ε
 b d . (46)  

Comparing the first of exponent parameters (45) with the absolute 

value of the second shows that the latter constraint holds iff 1.oλ >


  

We shall come back to this issue in next Section after proving that 
DCTs of the 1,0;2- RefJ CSLE using the cited pairs of the basic 

solutions as seed functions bring us back to the Fuschian CSLE  with 
three poles while shifting by 2 the ExpDiff for the pole at the origin.  
Bearing in mind that the DCTs in question keep unchanged density 

function (23) this implies that the 1,0;2- RefJ CSLE preserves its 

form under both second-order DCTs (with 1oλ >
 in the second 

instance) which is the main purpose of this paper. 
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Note that the pairs of solutions used by us as the seed functions for the 
corresponding second-order DCTs represent the very special cases of 
the suppression and respectively addition of the ground-energy state 
introduced by Baye as a systematic method for constructing phase-
equivalent potentials so the mentioned shifts of the ExpDiffs by 2 are 
direct consequences of his Eqs.  (3.1) and (3.6) [61]. 

Double-step form invariance of the 1,0;2- RefJ  CSLE 

Let us now consider the double-step DCT using a pair of basic seed 
functions 

1 1 ,0 o2 21
( 1) [1 ( , ; )]

[z; , ; ] z (1 z) ,,0 o
±λ+ +λ λ µ κ

λ µ κ = −±φ




  


 (47) 

where λ is oλ  or o−λ


 and 

,0 o o 1; ,0 o o( , ; ) ( , ; )−λ λ µ κ = λ λ µ κ
   

 

a , 

,0 o o o o1; ,0( , ; ) ( , ; )+λ −λ µ κ = λ λ µ κ
   

 

b , 

,0 o o 1; ,0 o o( , ; ) ( , ; )+λ λ µ κ = λ λ µ κ
   

 

c ,  

,0 o o o o1; ,0( , ; ) ( , ; )−λ −λ µ κ = λ λ µ κ
   

 

d .      (48)  

The RefPF for the transformed CSLE can be represented as [42] 

 1
]

o o
o

o
o 1

1

I [z; , ; | ,0; ,0] I [z; ,

W[z; , ; ]d2 [z; ]
dz [z; ]

ld
ρ

ρ

λ µ κ + − = λ

λ µ κ
µ + κ

κ

  









 







 (49) 

Where 

1 1 1o ,0 o ,0 oW[z; , ; ] W [z; , ; ], [z; , ; ]{ }+ −λ µ κ ≡ λ µ κ λ µ κφ φ
  

   

 

1 1

1 1

,0 o ,0 o

o o,0 ,0

[z; , ; ] [z; , ; ]

[z; , ; ] [z; , ; ]
• •

+ −

+ −

λ µ κ λ µ κ
=

λ µ κ λ µ κ

φ φ

φ φ

 

 

 

 

 

 

. (50) 

Substituting (47) into (50) shows that the Wronskian of the selected 
pair of the basic solutions is given by the simple formula 

1

1 1

,0 o ,0 o
o

,0 o ,0 o

( , ; ) ( , ; )
W[z; , ; ] ]

2(1 z)
[z; , ; ] [z; , ; ])

+ −

+ −

λ λ µ κ −λ λ µ κ
λ µ κ =

−
λ µ κ λ µ κφ φ

 

 







 

 
  (51) 

which represents the core of our derivation.  Combining it with the 
general formula for the derivative of the Wronskian of two solutions 
of the generic CSLE 

1 1
1

1 1

,0 o ,0 o
o

o o,0 ,0

[z; , ; ] [z; , ; ]
W[z; , ; ]

[z; , ; ] [z; , ; ]

•

•• ••

+ −

+ −

λ µ κ λ µ κ
λ µ κ =

λ µ κ λ µ κ

φ φ

φ φ

 

 





 

 

 

 

 

) )

1 1

o o 1

,0 o ,0 o

( , ; ( , ; [z; ]

[z; , ; ] [z; , ; ]

ρ−+ −

+ −

 = ε λ µ κ ε λ µ κ κ 
λ µ κ λ µ κφ φ

 

  

 

  

   (52) 

one can represent the logarithmic derivative of Wronskian (50) as 

1

T

o ,0 o

,0 o

W[z; , ; ] [ ( , ; )

[z z ( )]( , ; )]
2z(1 z)

ld

κ κ

+

−

λ µ κ = − λ λ µ κ

−+λ λ µ κ
−

 

 

 





 

, (53) 

where we also used (37) to express the energy difference in terms of 
exponent parameters (48): 

0
2( , ; ) : ( , ; )o o,ε λ µ κ = −λ λ µ κ± ± 

 

.  (54) 

Taking advantage of the fact that ,0 o;( , )±λ λ µ κ




 are the two roots 

of the quadratic equation 

0 0
2(1 ) ( , ; ) 2( 1)o, ,

2 2( , ; ) (1 ) 0o o

− κ λ λ µ κ + λ + λ± ±

λ µ κ + + λ −µ =

 



 

(55) 

so 

,0 o ,0 o; ) ;
2( 1)( , ( , )

1+ −+ λ =
λ +

λ λ µ κ λ µ κ
κ −

 

 (56) 

we can re-write (53) as  

T
1

[ ]
o

1 z z ( )W[z; , ; ]
z(1 z)1

ld ×
λ + κ − κλ µ κ = −

−κ −
 



 

. (57) 

with the numerator of the z-dependent fraction is positive for 0 ≤ z


 ≤ 

1. Consequently 

1
T

o

T1

W[z; , ; ] 2( 1) [z z ( )] / z
z ( )[z; ]

λ µ κ λ +
= κ − κ
κ κκ











ρ

ld . (58) 

Substituting (58) into the second summand in (49) and taking into 
account that 

3
2

T
T

T

z ( )d [1 z ( ) / z]
dz 2z [z z ( )]

κ κ
κ − κ =

κ − κ







  (59) 

thus gives 

1
2

o
1

1

W[z; , ; ]d 12 [z; ] .
dz [z; ] z (1 z)

λ µ κ λ +
κ =

κ −









ρ
ρ

ld  (60) 

This brings us to the sought-for relation 

]o o
o o

1I [z; , | ,0; ,0] I [z; 2, .
z (1 z)

+
λ +

λ µ + − = λ + µ
−

 

 (61) 

for the RefPF of the transformed CSLE.  As a direct consequence of 
(61) we assert that the two Liouville potentials associated with the 
RefPFs in question are related via the translational shape-invariance 
condition 

]o oV[z(r); , ; | ,0; ,0] V[z(r); 2, ; 4( 1).−λ µ κ + − = λ + µ κ λ +
  

(62) 

with oλ = ±λ


 outside the interval [-2, 0]. 

If we use the pair of seed functions of the types a  and c  then the 

DCT in question increases the ExpDiff for the pole at the origin by 2, 
while erasing the ground energy level.  Examination of quadratic 

equation (41) for the q-RSs , m+t  shows that

,n 1 ,n( 2, ; ) ( , ; )1; o o 1; o o−λ λ + µ κ = λ λ µ κ
 c c .(63) 
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We thus confirmed that the discrete energy spectrum of the transformed 
potential V(r; 2, ; )o oλ + µ κ

 



 is formed by no-1 excited energy levels of 

radial potential (11), in agreement with the conventional  
rules of the SUSY quantum mechanics [21]. 
The problem becomes more complicated for the second pair of seed 
functions of the types b  andd  so the corresponding double-step DCT 

inserts the new energy level 0( 2, ; )1; o oε λ − µ κ
 



c  while decreasing the 

ExpDiff for the pole at the origin by 2 iff 2oλ > .  As far as the above 

constrains holds no excited energy levels of the transformed potential 

V(r; 2, ; )o oλ − µ κ
 



 precisely match  

the discrete energy spectrum of original radial potential (11): 
 

,n 1 ,n( 2, ; ) ( , ; )o o o o+ε λ − µ κ = ε λ µ κ
 c c  for 2oλ >  (64) as 

anticipated.   
However, the discrete energy spectrum of the potential 

V(r;2 , ; )o o−λ µ κ
 



 for 0 1o< λ <


 or 1 2o< λ <


 is given by 

the different formulas 

,n ,n
2(2 , ; ) (2 , ; ) ( , ; )o o o o o o1; ,nε −λ µ κ = −λ −λ µ κ ≠ ε λ µ κ

     

  

c cc
(65) 

In the region 0 1o< λ <


the 1,0;2- RefJ CSLE has a limit-circle 

(LC) singularity at the origin.  As  
a result the DTs with the TFs irregular at this singular point violate 
conventional rules of the SUSY quantum mechanics [37].   If 

1 2o< λ <


 then the RDT of CSLE (9) with the TF ,0b  results in 

the isospectral radial potential V(r; , ; ,0)o o |λ µ κ
 



b  of the Heun 

class exactly quantized by polynomial solutions of the Heun equation 
[25,62].  However, the DT in question reduces by 1 the ExpDiff for 
the pole at the origin and thereby places this singular point into the 
LC region of the CSLE with the RefPF for.   

As a result, any DT using a TF irregular at origin generates a potential 
with all bound energy levels essentially different from those for the 
mentioned radial potential of the Heun class.  The double-step DCT 

with seed solutions ,0b  and ,0d  thus generates the 1,0;2- RefJ
potential with the energy levels having no resemblance with the 
original energy spectrum. 
Making use of Schulze-Halberg’s the general formula for the solutions 
of the generic CSLE constructed using an arbitrary DCT we can 
represent the DC sT  of PFS (27) under action of the double-step 

DCTs of our interest as [63] 

1 0 o o[z; , ; ; ,0; ,0]± ±′Φ λ µ κ ε |
    



t t  (66) 

1 1,0 o o ,0 o o 1 0 o o

1 o o

Wr [z; , ; ], [z; , ; ], [z ; , ; ; ]

[z; ]W[z; , ; | ,0; ,0]

{ }± ±′

± ±

λ µ κ λ µ κ Φ λ µ κ ε

′κ λ µ κ

φ φ
 

     

  

    

 

 

ρ
t t

t t
  

( )± ±′≠
 

t t , 

where 

o oW[z; , ; | ,0; ,0]± ±′λ µ κ
   



t t  

1 1,0 o o ,0 o o: Wr [z; , ; ], [z; , ; ]}{ ± ±′= λ µ κ λ µ κφ φ
 

  

  

t t  

1; ,0 1; ,0 1 1,0 o o

,0 o o

( ) [z; , ; ]

[z; , ; ] / (1 z).
′± ± ±

±′

= λ −λ λ µ κ

λ µ κ −

φ

φ
 





  



 







t t t

t
  (67) 

Converting the CWs to the KDs via (C1) with j =  = 1 thus gives 

1 0 o o
1 0 o o

o o

[z; , ; ; | ,0; ,0]
[z; , ; ; ,0; ,0]

W[z; , ; | ,0; ,0]
± ±

± ±
± ±

′λ µ κ ε
′Φ λ µ κ ε =

′λ µ κ
|    



    



   



K t t
t t

t t
(68) 
where 

1 0 o o[z; , ; ; | ,0; ,0] :± ±′λ µ κ ε =
   



K t t  (69)  

[z; , ; ] [z; , ;1 ,0 o o 1 ,0 o o

[z; , ; ] [z; , ; ] [z ; , ; ; ]o o o o o o1 01 ,0 1 ,0
2 2[z; , ; ] [z; , ; ] [z ; , ; ; ]1 ,0 o o 1 ,0 o o 1 0 o o1; ,0 1; ,0

φ λ µ κ φ λ µ κ′± ±
• • •
φ λ µ κ φ λ µ κ Φ λ µ κ ε′± ±

λ φ λ µ κ λ φ λ µ κ −ε Φ λ µ κ ε′′± ±+ +

  

   

 

     

    

 

       

    

 

 

t t

t t

t tt t

] [z ; , ; ; ]1 0 o o

.

Φ λ µ κ ε
  



 

Note the disappearance of the density function from the denominator 
of fraction (68), in contrast with (66).  This is the main advantage of 
the KD representation compared with the Crum formula. As explicitly 
demonstrated below the numerator of fraction (68) and therefore the 
fraction itself do not have a pole at the TP zero Tz ( )κ



 as expected 

from the fact that RefPF (61) is regular at this point. 
Setting 

1 o o[z; , ; ; | ,0; ] :± ±′Θ λ µ κ ε =
   



t t  

o 1; ,0 o 1; ,0
o

[z; , ] [z; , ]
[z; , ]

z(1 z)
± ±′ϑ ±λ λ ϑ ±λ λ

ϑ λ − −ε
−

 

    

 

 

t t
 

With 

1 10 12 2( 1) ( 1)
0 1[z; , ] : z (1 z) λλ + +

ϑ λ λ = −
  

  (71) 

we can represent the numerator of fraction (68) as  

1 10 o o o o[z; , ; ; | ,0; ,0] [z; , ; ; | ,0; ,0]± ± ± ±′ ′λ µ κ ε = Θ λ µ κ ε ×
     

 

t t t tK  

1 0 o oF [z; , ; ; | ,0; ,0],± ±′λ µ κ ε
   



t t  

where the function 

1 0 o oF [z; , ; ; | ,0; ,0] :± ±′λ µ κ ε =
   



t t  

{ }1 o o

o o o

,; F ( , ; ; | |) ,

( , ; ; | |); 1;z

[

]
± ±′− −ε α λ µ κ − ε

β λ µ κ − ε λ +

D |
  



 



t t
 

will be termed the ‘Darboux-Crum-Krein transform’ ( DCKT )  of the 
hypergeometric function.  Similarly we refer the first-order differential 
operators 

{ }1 ;+ +′− −εD |


 

t t

1 1 1
d1 z 1 1 1 2(z 1)1; ,0 1; ,02 dz

2 2
1; ,0 1; ,0

+ +

+ +

=− λ + λ + − ε + −′

− λ −λ ε′

 

 

 

 

t t

t t

 

And 
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{ }1 ;− −′− −εD |


 

t t

1 1 1
d1 z z z 2(z 1) z1; ,0 1; ,0 o2 dz

2 2
1; ,0 1; ,0

− −

− −

 = − λ λ − ε + − λ +′   
− λ −λ ε′

  

 

 

 

t t

t t
(75) 
as ‘DCK generators’.   It can be easily verify that the matrix expressions 
for the DCK generators can be simplified as follows 

{ }1 1 1; ,0 1; ,02; z( )+ +′+ +′− −ε = − λ −λ ×D |
 

     t tt t  

1; ,0 1; ,0 1; ,0 1; ,0
d( )( ) 2( )(z 1)
dz+ + + +′ ′

 
−ε + λ −ε + λ + λ + λ − 

    

   



t t t t  

And 

{ }1 1 1; ,0 1; ,02; ( )− −′− −′− −ε = λ −λ ×D |
 

    t tt t  

1; ,0 1; ,0 1; ,0 1; ,0 o
d( )( )z 2( )(1 z) z .
dz− − − −′ ′

   −ε + λ −ε + λ + λ + λ − λ +  
   

   

      



t t t t
 

Bearing in mind that 1; ,0±λ


 t  and 1; ,0±′λ


 t  represent two roots (44) 

or (45) of the one of quadratic equation (41) with m=0, coupled with 

(29) we can represent the quadratic polynomials in −ε  as 

1; ,0 1; ,0
2 2

o o

( )( )

( , ) (1 )

± ±′−ε + λ −ε + λ

= µ µ −κε − ± λ − −ε

 

 





t t
 

Let us now confirm that function  (73) generated by operator (76) has 
the simple zero at the origin as expected from the fact that the DCT in 
question simply increases by 2 the ExpDiff  for the pole of the CSLE 
at this point.  First comparing (78) with (34) shows that 

1; ,0 1; ,0

o o o o

( )( )

4 ( , ; ; ) ( , ; ; ).
+ +′−ε + λ −ε + λ

= − α λ µ κ − −ε β λ µ κ − −ε
 

 

  

  

t t
 

Taking into account (44) we can thus re-write operator (76) as 

{ }1
0 o o( , ; )

; z
2(1 )

×+ +
∆ λ µ κ

′− −ε = −
− κ

D |  



 
 

t t  (80) 

o o o o

o

4 ( , ; ; ) ( , ; ; )
.d4( 1)(z 1)

dz

 − α λ µ κ − −ε β λ µ κ − −ε
 
 + λ + − 
 

  

  





 

Finally representing contiguous relation (13) in §33 in [64] as 

o o o
d1(1 z) F , ; 1;z F , ; 1;z]
dz

[ ] [λ + − α β λ + αβ α β λ += +
       

  



 (85) 

{ }o o o o1) 1) F , ; 2;z] F , ; 1;z]( ( [ [α−λ − β−λ − α β λ + − α β λ +
       

  

 

and setting α=β=γ=0 in (48) in [65]: 

o o

o
o o

F , ; 1;z] F , ; 2;z]

zF 1, 1; 3;z]
( 1)( 2)

[ [

[

α β λ + − α β λ +

αβ
= α + β+ λ +

λ + λ +

    

 





 



 

 

Gives 

1 0 o oF [z; , ; ; | ,0; ,0]− −′λ µ κ ε
   



t t   (83) 

o o

o o o

zF ( , ; ; | |) 1,

( , ; ; | |) 1; 3;0

[

]

∝ α λ µ κ − ε +

β λ µ κ − ε + λ +





 



 

which completes the proof. 
In closing let us also point to the fact that function (73) generated by 
operator (81) remains finite at the origin: 

1 0 o o

0 o o
o o

F [0; , ; ; | ,0; ,0]

( , ; )
2 ( 1)

1

− −′λ µ κ ε

∆ −λ µ κ
= λ λ −

− κ

  



 



 

t t
 

as expected from the fact that the DCT in question simply decreases 
by 2 the ExpDiff  for the pole of the CSLE at the origin while keeping 
the parameter oµ



 unchanged.   

Note that all the results were obtained by us with no reference to the 
Liouville transformations leading to its quantum-mechanical 
applications.  To be able to apply the developed formalism to the 
quantum-mechanical problems one simply needs to convert the 1,0;2-

RefJ CSLE to the Schrödinger equation with rational potential (11) 

using the change of variable (12) as it has been done in a slightly 
modified form [66-69]. 

CONCLUSION 
It was shown that the radial potential exactly solvable via a 
superposition of two hypergeometric series (termed ‘radial Jacobi-
reference potential in the paper) has two pairs of q-RSs such that their 
analytical continuations do not have zeros at any regular point in the 
complex plane.  Taking into account that the absolute values of the 
characteristic exponents (ChExps) for the pole at the origin are the 
same for all four ‘basic’ solutions the latter were grouped into two pairs 
via the requirement that the paired solutions share the same ChExp 
for the mentioned singularity.  Each pair of the basic solutions ,0a  and 

,0c or ,0b  and ,0d   is then used as seed functions for the double-step 

DCT of the radial potential in question. It is proven that both 
transformation simply shifts by  the ExpDiff for the pole of the CSLE 
at the origin while keeping unchanged the last two of the three 

potential parameters o o, ,λ µ




and κ  

Since the double-step shape invariance of the potential is the direct 

consequence of translational form invariance of the 1,0,2- RefJ CSLE 

under two sequential LDTs it must retain if the Liouville 
transformation is performed on the infinite interval (+1, +∞) obtained 
from the finite interval (0, +1) by the reciprocal transformation z → 
1/z [25] (assuming that the TP zero lies on the negative semi-axis).  The 
latter transformation results in CSLE (9) with the density function: 

1
1 1 2 2

T [z][z; ]
4z (1 z)

=
−

ρ T  

Where 

1T [0] 0>  

The corresponding ‘Linear Tangent Polynomial’ (LTP) potential 
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should be  double-step shape invariant as well. If the TP 1T [z]  has a 

negative root then the Liouville transformation of the RefJ CSLE 
with density function (85) can be again performed on the positive finite 
and positive infinite quantization intervals: (0, 1) and (1, ∞) 
accordingly as it was originally done by Quesne for the TSI limits of 
the Liouville potentials of the Eckart class: the RM (or Eckart) and MR 
potentials. 

Note that Ishkhanyan and Krainov referred to the density functions 

1 [z]ρ  associated with TFI RefJ  CSLEs as ‘discretization of 

Natanzon potentials’ and correctly stressed that there were two pairs of 
the density functions such that the functions in each pair are related 
via linear fractional transformation.   However, based on the cited 
observation they then erroneously claimed that there were only two 
potentials solvable by hypergeometric functions, contrary to the 
common knowledge that there are four potentials satisfying the latter 
requirement (t- and h-versions of the PT potential and already 
mentioned pair of the RM and MR potentials).  The cited authors were 
apparently confused by the fact that the Liouville transformations for 
the potentials in each pair are performed on the finite and infinite 
intervals of the variable z separated by a singular end point and as a 
results  associated with two completely changes of variable x(z).  

In this communication we skip the discussion of the first step – the 
LDT resulting in rational potentials exactly quantized by polynomial 
solutions of the Heun equation with degree-dependent exponent 

parameters.  Using four basic solutions t  ( t= ,a b , c , and d ) as TFs 
one can construct a quartet of radial potentials of Heun class quantized 
by polynomials.  They represent four exactly solvable reductions of  the 

potential of the type (1,
1

2+ ,
1

2− ) in Ishkhanyan’s classification scheme 
for the ‘Lemieux-Bose’ potentials. 

Similarly the reciprocal transformation z → 1/z of the constructed 
HRef CSLEs results in a quartet of  
Heun-Reference (HRef) CSLEs associated with the Liouville potentials 
on the line. Again they represent four reductions of the Lemieux-Bose 

potential of the type (1,1,
1

2− ) with all the eigenfunctions expressible in 
terms of polynomial solutions of the Heun equation.   

Both radial RefJ  potential and its LTP supplement have confluent 

counter-parts with a Coulomb and respectively with the infinite 
parabolic barrier at +∞. It will be shown in separate studies that the 
latter potentials are also double-step shape-invariant whereas the 

quartets of their single-step D sT  are quantized by polynomial 

solutions of the confluent Heun equation. 
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Appendix A 
Radial RefJ  potential in Ginocchio’s representation 

To relate our current notation for the radial RefJ  potential to that in 

[3] it seems useful to slightly modify Wu’s arguments [4, 5] in support 
of the assertion that the constant-mass limit of Ginocchio’s radial 
‘position-dependent mass’ (PDM) potential is nothing but another 
representation for the radial potential exactly solvable in terms of a 
superposition of two hypergeometric series [1, 2]. 
First let us set  

2 2a = ( 1)− − −


λ λ b


= 2−λ , 1
4c a+b = −≡

 

λ  (A1) 

so radial RefJ  potential (11) takes form 

2 2 2
1 o o 1 o oV [z; , ] V[z; , ; ( 1), ,0]− − −λ µ ≡ λ µ −

    

 

λ λ λλ  

4
2 1 1)o 1 o4 22

(1 z)( V [z; , ]
z N[z; ]

−
= λ − + µ

 



 

λ
λ

λ

    (A2) 

with 
2 2N[z; ] : z (1 z)= + −

  

λ λ     (A3) 

and the radial RefJ potential with no centrifugal barrier [49]: 

4 21 4 2 2o411 o2 2 2 2
( )(1 z) (1 )(1 z)V [z; , ]

N[z; ] 4N [z; ]

−µ − − −
µ = −









 

λ λ λ
λ

λ λ

(A4) 

4 2

2 2
(1 )(1 z)
N [z; ]
− −

− 



λ λ

λ

2

2
5 (1 z)1
4N[z; ]

 −
− 

  





λ

λ
 

representing the non-singular remainder of  sum  (A2).  In following 
Wu [4], we then introduce the auxiliary variable 

2
zy

N[z; ]
= 



λ
 for  0 < z



< 1,    (A5) 

so, as indicated by his Eqs. (3.4.11) and (3.4.12),  

2 2 2 2 2z z[y; ] y / Y(y ; )≡ =
 

λ λ λ     (A6) 

and 

22
2 2 2

dz y
dy Y (y ; )

=
λ

λ
   (A7) 

respectively, where 

2 2 2 2Y(y ; ) 1 ( 1) y≡ + −λ λ     (A8) 

It is worth mentioning that the letter z in [1, 2, 4, 5] is used in exactly 
the same sense as z



here and thereby the variable in question differs 

from Ginocchio’s variable (3.2) in [3].  Multiplying the square of (A5) 
by its reverse (A6) one finds that polynomials (A3) and (A8) are related 
via the reciprocal formula 

2 2

2
2N z;

Y[y ; ]
[ ] =


λ
λ

λ
    (A9) 

Substituting (A5) and 

2 2 21 z (1 y ) / Y(y ; )− = −


λ     (A10) 

into the first derivative of )z(r;


λ with respect to r, 

1
21

2 2) 2
zz (r; [z] 2 (1 z)

N[z; ]
ρ
−

′ = = − 

  





λ λλ λ
     (A11) 

and then making use of the chain rule coupled with (A7) shows that 

variable y(x) obeys the ODE 

22 2)y (r; (1 y )Y(y ; )′ = −λ λ  for  0 < y < +1.   (A12) 

Integrating the ODE 

2 2
d r 1
d y (1 y )Y(y ; )

=
− λ

    (A13) 

under the boundary r=0 at y=0 we come to Eqs (2.8a) and (2.8b) in 
[49], with r varying from 0 to ∞ for 0 ≤ y < 1.   Making use of (A3) and 
(A5) one can verify that the cited equations are equivalent to (15)-(17) 
in Section 2, with 

1
2[z] y[z]−=

 

arctanhλr    (A14) 

2
2

2

2
2

2
2

1 1 y[z] for 1,

[z]
1 1 for 1.

( )

( )

 − − >
= 
 −
 − − <






arctan

arctanh

λ
λ λ

λ

λ
λ λ

λ

r
  (A15) 

Taking advantage of (A9) we can alternatively represent (A10) as 

2 2
2

1 z (1 y )
N[z; ]

−−
= −



λ
λ

    (A16) 

Substituting (A9) and (A15) into (A4) thus gives 

G
21 1o 1 o2 2V [y; , ; ] V z[y]; ,[ ]µ ≡ µ =



 

λ λ  

G
2 2 2 21 1 1)o 4 2 2(1 y )( V [y; , ; ],+− − µ −



λ λ   (A17) 

With 

G
2 2 21 1 1

2 2 4V [y; , ; ] (1 )(1 y )= − − − ×λ λ  

{ }2 2 2 224Y[y ; ] (1 y ) 5Y[y ; ] 1 − − + λ λ   (A18) 

Elementary algebraic modification then confirm that potential (A17) 
coincides with the symmetric Ginocchio potential on the line [49] if 
we choose 

1o 2µ = ν +


    (A19) 

Ultimately substituting (A6) and (A16) into the first summand in sum 
(A2) gives 

2 2 2 2 21 )G o o o G o4V [y; , ; ] ( (y 1)Y(y ; ) V [y; ; ],−λ µ = λ − − + µ
 

 

λ λ λ

(A20) 

in agreement with (7.86) in [5] with olα = λ


 and 1o 2lν = µ −


.  

Setting a = 0 in (3.2b) in [3] brings us to the first (positive) root in pair 
(44) while constraint (A.1) turns (37) into  Ginocchio’s algebraic 
formula (3.2a) for bound energy levels. 

After being expressed in terms of the variable 2z(r; )


λ  the 

eigenfunctions of the radial Schrodinger equation with potential (A2) 
take form  

1 1 (o 1; n2 2 1)2 2
n o o n[z; , ; ] B z (1 z)λ λ −−λ µ = − ×ψ  

  



λ λ c
c (A21) 

11 1; n o42 1
( , )2[ ] nN z; [z]P (2z 1)ρ

− λ λ
− 

 



λ λ
c  

with the normalizing factor given by (21)  in [2]: 
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− λ + λ + +
 
λ λ + λ + + 
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Γ λ + + Γ λ + + × Γ λ + λ + + 

λ

λ

c
c c

c
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(A22) 

where we also took into account that 

2

2 2
1; n o o o 1; n o o

1 1
( , ; ) ( , ; ) 2n 1

−
− =

λ λ µ λ + λ λ µ + +

λ

λ λt t

(A23) 

2 2
1; n o o o

2 2
1; n o o o 1; n o o

( , ; ) 2n 1

( , ; )[ ( , ; ) 2n 1]

λ λ µ + λ + +

λ λ µ λ + λ λ µ + +

λ λ

λ λ

t

t t

 

Keeping in mind that x in [3] stands for the variable 2z 1−


here the 

reader can directly verify that Ginocchio’s normalizing factor (3.5b) in 
[3] is simply another form of (A22). 
To match Ginocchio’s [3] formula (4.1a) for the scattering function 
with (17) in [1]: 

( )
( )

( ) ( )
( ) ( )

1( ) 1
1 o o

1 ( ) ( ) ( )
S( )

1 ( ) 1 ( ) 1 ( )
λ Γ −λ Γ α Γ β

= ρ
Γ + λ Γ λ + −α Γ λ + −β

k k k k
k

k k k
(A24) 

With 

2
1 1( ) c /λ = − ≡ − λi ik k k    (A25) 

standing for β in [3], note that, according to its definition (16), the 

function 1r [z]


 satisfies the asymptotic relation: 

1
z 1

2
1(1 z) (2 [z] / c ) 4

→

− − =  

lim exp λr
   (A26) 

and therefore 

2
0

z 1
2 ( r[z] r ) 2(1 z) 4

→

− − 
− = 

 





lim e λ λ    (A27) 

where 

0 2

2
2

2
r :

2
2

2

1 1 for 1,

[1]
1 1 for 1.

( )

( )

=

 − − >
= 
 −
 − − <


arctan

arctanh

r

λ
λ λ

λ

λ
λ λ

λ

(A28) 

(There is a misprint in Ginocchio’s definition (2.3f) of the latter 
parameter for 1>λ ,)  Taking into account that, according to (A16), 

2
0

z 1
2 ( r[z] r )(1 y[z])lim e

→

− 
− = 

 





λ
 

2
0

z 1
2 ( r[z] r ) 21

2 (1 z) 2lim e
→

− − 
− = 

 





λ λ   (A29) 

we thus come to (2.3e) in [3] as expected. Comparing the above 

expression with (6) in [3] shows that the parameter ρ appearing in S-
matrix element (17) in [1] can be represented as 

2
02 r24 −ρ = e λλ   (A30) 

or alternatively 

2
12 rρ = λe  (A31) 

making use of Ginocchio’s parameter (4.1b), 

1 0
2r r ( / 2)−= − lnλ λ    (A32) 

Substituting (A1) into (9) in [2], with 

2
of 1,≡ µ −


     (A33) 

and representing Ginocchio’s parameter (4.1d) for l = a =0 as 

2 4 2 2
0 o( ) : (1 )−ν ≡ µ = µ + −

 

k kλ λ   (A34) 

One finds 

1 o2 ( ) ( ) 1 ( )α = λ + λ + −µ




k k k  

1 o2 ( ) ( ) 1 ( )β = λ + λ + +µ




k k k  (A35) 

Keeping in mind that 

1 1 1 1(1 c ) / (1 c ) ( c ) / ( c )Γ + Γ − = −Γ Γ −k k k ki i i i (A36) 

we can represent  S-matrix element (A24) in Ginocchio’s form (4.1a) 
which completes the proof. 

Appendix B 

‘Generalized’ Ginocchio potential 
Let us now confirm that the so-called ‘generalized’ Ginocchio potential 

defined via (8) in [6], with λ, s, and γ  standing for 1
2oλ +



 1
2 ,oµ −



and >1λ  here, is nothing but the radial RefJ potential expressed in 

terms of the new variable  

u(r) z(r)≡


atanh    (B1) 

Indeed taking into account that 

2

2 2 2N[

1 11
z; ] usinh

−
= +

+


λ

λ λ
   (B2) 

we can formally represent radial RefJ potential (A2) as  

4 2 1 )o2 4
1 o o 2

(
V [ u; , ]

u
tanh

sinh

λ −
λ µ = 

 



λ
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2
2 11 o22 2
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sinh
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 + 





λ
λ
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  (B3) 

Substituting (B2) and 

2 2 2N[

1 z 1
z; ] usinh
−

=
+





λ λ
  (B4) 

into (A4) then gives 

4 2 23o2 411 o2 2 2
( )

V [ u; , ]
u

tanh
sinh

µ + −
µ = − −

+






λ λ
λ

λ
 

4 2 2 2 2

2 2 2 2 2 2 24(

(1 ) 3(3 1) 5 (1 )
u) u u)sinh sinh sinh

 − − −
× − 
 + + + 

λ λ λ λ λ

λ λ (λ
 (B5) 

in agreement with (8) in [6]. 
After being expressed in terms of the variable z(r)



 the Jost solutions 

f (r; ) f [z(r); ]± ±≡


k k   (B6) 

defined via the conventional asymptotic formulas 
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r
r

e f (r; ) 1[ ]+
±

→∞
=k kilim   (B7) 

take form: 

11 o22

1 ( )24 1 1
1 zf [z; ] T [z] / c z

± λ
− λ

±
 −

=  ρ 
 

  

k
k  
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k k   (B8) 

where 

o( ) ( ) ( ) ( ) 1− + − +α +α = β +β = λ +


k k k k (B9) 
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− − + +β −α = α −β
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k k k k

k k k
 (B11) 

and the parameter ρ  can be expressed in terms of Ginocchio’s 
parameter 1r  via (A29).  The Jost function and its complex conjugated 

counter-part are defined via (12.140) in [24]: 

o 1
2o

r 0
( ) : 2 [r f ( ; r)]

λ −
± ±

→
= λ ≡k k
 limJ  

1 1o2 4o
z 0

2 lim (bz) f [ ;z]λ −
±
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which gives 
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With 
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− −± ±
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α β ± λ =

Γ ± λ Γ ± λ α β
Γ ± λ α Γ ± λ β

k k k
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(B14) 

Note that the presented expression for the Jost function differs by the 
factor o2λ



 from (14) in [1] because the latter factor o2 2s 1λ ≡ −


 was 

incorrectly dropped in the definition of the Jost function. 
The corresponding S-matrix element is obtained via (12.154) in [24]: 

S( ) ( ) / ( )− += F Fk k k    (B15) 

used by us in [1] to derive (A24).   On other hand, as already pointed 
to by Lévai et al [6] their  

expression (21) for this element (with -k dependent parameters (17) 

and (18) standing for 1
2( )µ −



k  and 1( )λ k  in our notation) 

differs from (A24) by the ill-defined factor (1)λwith the real exponent 

1o 2λ ≡ λ + .   In contrary to the explanation of this discrepancy in 

[6], the error came from the fact that the Jost function and its counter-
part were defined via (12.142) and (12.142a) in [24]: 

1 1 1 )o o2 2 2(

o
( ) : ( /2) e ( )

( )
λ − − π λ −

± ±
π

=
Γ λ

 



J Fk k ki  (B16) 

and as a result, according to (12.154) in [24] 
1 )o 2(S( ) e ( ) / ( )π λ −

− +=  J Jk k ki
   (B17) 

which brings us back to (A24), in agreement with Ginocchio’s results 
[3]. 

Appendix C 

Krein representation of CWs formed by solutions of generic CSLE 
The representation of the DC sT of a principal solution the 

Schrödinger equation in terms of the ratio of two KDs was initially 
studied by Bagrov and Samsonov [68].  They took advantage of this 
representation to show that DCT can be represented as a linear 
differential operator acting on solutions of the Schrödinger equation 
under consideration.  In particular making use of the chain relations 
for Krein determinants allowed the cited authors to prove the 
equivalence of the mentioned linear operators to integral 
transformations in the Gelfand-Levitan formalism (see [69] for details 
and the references therein). 
The purpose of this appendix is to obtain the explicit relation between 
the CW and KD formed by seed solutions k[z]φ  of the generic CSLE 

at the energies kε , where we disregard the dependence of both 

solutions and energies on the parameters Ko;TΛ .  Namely we prove 

below that 

j( j 1)Wr [z],..., [z] [z]1 2j
[z];k 1,...,2 j k 1,...,2 j

{ }
{ }

+ −φ φ =+

φ ε= + = +





 

ρ
K

 (C1) 

where 

k 1,...,2 j k 1,...,2 j

1 2 j

1 2 j
1 1 2 j 2 j

j 1 j 1
1 2 j1 2 j

j 1 j 1
1 2 j1 2 j

[z] ... [z]

[z] ... [z]
[z] ... [z]

[z] ... [z]

[z] ... [z]

[z];

...

{ }:

• •

• •

= =

− −

− −

φ φ

φ φ
ε φ ε φ

ε φ ε φ

ε φ ε φ

φ ε =K

(C2) 

and 

k 1,...,2 j 1 k 1,...,2 j 1[z];{ }:= + = +φ ε =K

1 2 j 1

1 2 j 1
1 1 2 j 1 2 j 1

j 1 j 1
11 2 j 1 2 j 1

j j
11 2 j 1 2 j 1

[z] ... [z]

[z] ... [z]
[z] ... [z]

j

[z] ... [z]

[z] ... [z]

( 1) ... .

• •

• •

+

+

+ +

− −
+ +

+ +

φ φ

φ φ
ε φ ε φ

ε φ ε φ

ε φ ε φ

−
(C3)  

To confirm (C1) we formally represent the (2 j )+  -th derivative of 

each seed solution k[z]φ  with respect to its argument z as a 

superposition of k[z]φ  and its first derivative 
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( )
2jd jk [z] [z]k k2jd z

(0) (0)z; ] [z] z; ] [z]k k k kj 1 j 1[ [
•

′φ ′−ε φ +′

ε φ + ε φ′ ′− −

=

F G

ρ
(C4) 

And 

( )
2j 1d jk = [z] [z]k k2j 1d z

(1) (1)z; ] [z] z; ] [z],k k k kj j 1[ [

•

•

′+ φ ′−ε φ +′+

ε φ + ε φ′ ′−

ρ

F G

(C5) 

where the z-dependent polynomials in ε are defined via the following 
mixed recurrence relations: 

( )

( )

(1) jz; ] j [z] [z]j

(0) (0) oz; ] z; ] I [z] [z] ,j 1 j 1

[

[ [

ld

•

′′ε = − ε +′

ε − ε + ε′ ′− −

F

F G

ρ ρ

ρ
 

(1) (0)z; ] z; ]kj 1 j 1[ [
•

ε = ε′ ′− −G G   (C6) 

and 

( ){ }(0) (1) j 1z; ] z; ] [z]j 1 j 2
(1)oI [z] [z] z; ],j 2

[ [

[

′−ε = − ε + − ε′ ′− −

− ε ε′−

F G

G

ρ

ρ
 

( )(0) j 1z; ] (j 1) [z] [z]j 1

(1) (1)z; ] z; ]j 1 j 2

[

[ [

ld

•

′−′ε = − − ε′−

+ ε + ε′ ′− −

G
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ρ ρ
(C7) 

Starting from 

(1) (1)
0 1z; ] z; ] 0[ [−ε = ε ≡F G    (C8) 

and 

(0) (0)
1 0

oz; ] I z] [z], ; ] 0[ [ [ε = − − ε ξ ε ≡F Gρ  (C9) 

Substituting (C6) and (C7) into the CW, eliminating all the summands 

which contain the monomials j
k [z]k
′′ε φ  or j

k [z]k
•′′ε φ  from the 

two upper rows, and also taking into account that 

j 1

j 1
2 j j j( j 1)
−

′=
′ + = − −∑  

   (C10) 

we come to (C1) as asserted. 

 
 


