RESEARCH
 UNE application de la théorie des groupes

David Strainchamps

Strainchamps D. UNE application de la théorie des groupes. J
Pure Appl Math. 2024; 8(1):01-02.

ABSTRACT

This article present a new conjecture that define a method to

INTRODUCTION

Let G_{b} a group of order b and $G_{b}=\left\{g_{0}, g_{1}, \cdot, g_{b-1}\right\}$ where g_{0} is the neutral element of G.

The purpose is to made a surjection, using the group G, between \mathbb{N} and the set of integers $\{0,1,2, \ldots, b-1\}$ and to do a conjecture with it [1].

In this introduction I will use an example to illustrate this surjection with $G=\mathbb{Z} / 4 \mathbb{Z}$.

Let $\mathrm{n} \in \mathbb{N}$. We convert n in base $\mathrm{b}=4$. So the integer is equal to: $\mathrm{n}=\sum_{i=0}^{\alpha} c_{i} \times b^{i}$ where any c_{i} is an element of the set $\{0,1,2,3\}$ and where:
$\exists!\alpha, \forall i>\alpha c_{i}=0$

We decide now $\forall i<=\alpha$ that all c_{i} equals to 0 are replaced by g_{0} and the 1 replaced by g_{1} and so on respectively the 2 replaced by g_{2} and the 3 replaced by g_{3}.

We can name this new value C_{i}
$\forall i C_{i} \in G=\mathbb{Z} / 4 \mathbb{Z}$
And after we made the surjection f with:
$\forall_{n} \in \mathbb{N} f(n)=\sum c_{i}^{\prime}$
This sum is made with the + that is the internal law of G.
Remark 1.1.
If the internal law of G is x, we can do a product.
And so all $f(n)$ are element of G, here in your example $\mathbb{Z} / 4 \mathbb{Z}$
calculate a sort of integral numeric in using the group theory.

Key words: Groups; Surjection; Polynomial sum; Logic

Finally we associate all the $f(n)$ equals g_{0} to the integer 0 and so on in the same order for all members of G with an bijection of identification that we name g

In your example of $G=\mathbb{Z} / 4 \mathbb{Z}$ and all $G=\mathbb{Z} / b \mathbb{Z}$ we can evidently view that:

Lemma 1.2.
If $G=\mathbb{Z} / b \mathbb{Z}$ also
$\forall n \in \mathbb{N}(g \circ f)(n) \equiv \sum c_{i} \bmod b$
Remark 1.3.
We have used $G=\mathbb{Z} / b \mathbb{Z}$ but it's clearly evident that the surjection g of f can be defined with the same process with any group G (Figure 1,2).

MAIN PROPERTY OF THE SURJECTION

In this section we will proove that there is b periode of b^{b-1} elements in the results of the surjection g of

So we have $b^{2}-b^{2}$ numbers and they are not the same as above
And so on until

In this last array $b^{\wedge}(b-1)-b^{\wedge}(b-2)$ numbers
So I thus described the first periodicity that I call 0 -period and we have $\mathrm{b}^{\wedge}(b-1)$ number in all
Figure 1) 0-periode.

[^0]
Strainchamps

De $\mathrm{N}=$	an $=$	From the law of the Groupe G				
$\mathrm{b}^{2}(\mathrm{~b}-1)$	$b^{2}(\mathrm{~b}-1)+\mathrm{b}-1$	$1+0$	1+1	1+2	1+b-1
$b^{2}(b-1)+b$	$b^{2}(\mathrm{~b}-1)+\mathrm{b}+\mathrm{b}-\mathrm{b}$	1+1+0	1+1+1	1+1+2	\ldots	1+1+b-1
$\mathrm{b}^{\prime}(\mathrm{b}-1)+(\mathrm{b}-1) \mathrm{b}$	$\mathrm{b}^{\wedge}(\mathrm{b}-1)+(\mathrm{b}-1)^{\text {a }}$	1+b-1+0	1+b-1+1	1+b-1+2	\ldots	$1+\mathrm{b}-1+\mathrm{b}-1$

We have b^{2} numbers

We obtain in all a 1-period of $\mathrm{b}^{\wedge}(\mathrm{b}-1)$ number
For the i-period the tables start with the ith line of the 1 st table of the 0 -period.
And we thus obtain b different periodicities
Il reste maintenant à prouver que (b)-période est une ($1+0$)-périod
The (b th)-period starts with $\mathrm{b}^{\wedge} \mathrm{b}$ and will have the same values as the 1 -period
he $\left(\right.$ th)-period starts with $j^{\circ} b b^{\wedge} b$ and j can be decomposed in base b and the decomposition of j in base b is the start Of one of the b first periods.

Figure 2) Other-periode.
Theorem 3.1.
If we define the b periods with a group G of order b and if we assign as in the section above to all element of the b periods, one element of the natural element $\{0,1,2, \cdot, \mathrm{~b}-1\}$ with the surjection g of then \forall polynom P of degree $<b$ we have this equality $\sum_{i=0}^{i=b^{b}-1} P(i)=b * \sum_{j}$ as g of $\left(c_{j}\right) 0^{P(j)}$

Proof.

Not yet perfomed but this conjecture do a definition of an integral numeric \sum_{j} as g of $\left(c_{j}\right) 0^{P(j)}$

ANNEXES

This script calculate a sum with all their terms in 43 s or calculate the same with 1 term over 6 in 6 s

```
clear all
format long
% b si votre pc a beaucoup de mémoire vive peut-être augmenté sur le mien
% non
b=6
X=0;
tic
for i=(1:(b^b-1))
X=X+vpi(num2str(i)^}\mp@subsup{)}{}{\wedge})
end
t= toc
t=toc
B=(0:(b-1));
indice1=zeros(1,b^2);
k=0;
for i=(0:(b-1))
indice1(i*b+1: }\mp@subsup{\textrm{i}}{}{*}\textrm{b}+\textrm{b})=\operatorname{mod}(\textrm{B}+\textrm{k},\textrm{b})
k=k+1;
end
indicetous=zeros(b,b^2);
indicetous(1,:)=indice1;
for j=(1:(b-1))
k=0;
B2=indice1(j*b}+1:\mp@subsup{\textrm{j}}{}{*}\textrm{b}+\textrm{b})
for i=B2
indicetous(j+1,\mp@subsup{k}{}{*}\textrm{b}+1:\mp@subsup{\textrm{k}}{}{*}\textrm{b}+\textrm{b})=\mathrm{ indicel(i*b}+1:\mp@subsup{\textrm{i}}{}{*}\textrm{b}+\textrm{b});
k=k+1;
end
end
for h=(3:b-1)
indicetous=indicetous';
indice=zeros(b,b^(h));
indice(1,:)=reshape(indicetous,1,b^(h));
```

```
for j=(1:(b-1))
k=0;
B2=indice1(j*}\mp@subsup{}{}{*}+1:\mp@subsup{j}{}{*}\mp@subsup{}{}{*}\textrm{b}+\textrm{b})
for i=B2
indice(j+1,\mp@subsup{\textrm{k}}{}{*}\textrm{b}}\mp@subsup{}{}{\wedge}(\textrm{h}-1)+1:\mp@subsup{\textrm{k}}{}{*}\mp@subsup{\textrm{b}}{}{\wedge}(\textrm{h}-1)+\mp@subsup{\textrm{b}}{}{\wedge}(\textrm{h}-1))=\mathrm{ indice(1,i* *^}(\textrm{h
-1)+1:i**`^(h-1)+b^(h-1));
k=k+1;
end
end
clear indicetous;
indicetous=indice;
clear indice
end
ind=zeros(1,\mp@subsup{b}{}{\wedge}b);
ind=reshape(indicetous',[l,b^b);
indfinal=find(ind==0)-1;
% t=toc
s=0
for i=indfinal
s=s+vpi(num2str(i))^5;
end
s=s*b
X-s
t2= toc
```


REFERENCES

1. Armstrong MA. Groups and Symmetry. Springer-Verlag New York Inc. 1988.

[^0]: Independent Researcher, Singapore
 Correspondence: David Strainchamps, Independent Researcher, Singapore, e-mail: david.strainchamps@gmail.com
 Received: 2 Jan, 2024, Manuscript No. pulipam-24-6987, Editor Assigned: 3 Jan, 2024, PreQC No. puljpam-24-6987(PQ), Reviewed: 5 Jan, 2024, QC No. pulipam-24-6987(Q), Revised: 7 Jan,2024, Manuscript No. puljpam-24-6987(R), Published: 31 Jan, 2024, DOI:-10.37532/2752-8081.24.8(1).01-02

 This open-access article is distributed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC) (http://creativecommons.org/licenses/by-nc/4.0/), which permits reuse, distribution and reproduction of the article, provided that the original work is properly cited and the reuse is restricted to noncommercial purposes. For commercial reuse, contact reprints@pulsus.com

