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RESEARCH
 UNE application de la théorie des groupes 

David Strainchamps 

INTRODUCTION 
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0

g is 

the neutral element of G. 

The purpose is to made a surjection, using the group G, between  
and the set of integers {0, 1, 2, . . . , b − 1} and to do a conjecture with 
it [1]. 

In this introduction I will use an example to illustrate this surjection 
with / 4 .G   

Let n .  We convert n in base b = 4. So the integer is equal to: 
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c  is an element of the set {0, 1, 2, 3} and

where: 
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We decide now i     that all 
i

c equals to 0 are replaced by
0

g

and the 1 replaced by 
1

g and so on respectively the 2 replaced by
2

g

and the 3 replaced by
3

g . 

We can name this new value 
'

i
C

'
/ 4

i
iC G  

And after we made the surjection f with: 

'( ) in
f n C  

This sum is made with the + that is the internal law of G. 

Remark 1.1. 
If the internal law of G is x, we can do a product. 

And so all f(n) are element of G, here in your example / 4

Finally we associate all the f(n) equals 
0

g to the integer 0 and so on in

the same order for all members of G with an bijection of 
identification that we name g 

In your example of / 4G  and all /G b we can evidently view 
that: 

Lemma 1.2. 
If /G b also 

( )( ) modin g o f n C b  

Remark 1.3. 
We have used /G b but it’s clearly evident that the surjection 

g o f can be defined with the same process with any group G (Figure 
1,2). 

MAIN PROPERTY OF THE SURJECTION 

In this section we will proove that there is b periode of 
1b

b


elements
in the results of the surjection g o f  

Figure 1) 0-periode. 
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Figure 2) Other-periode. 

Theorem 3.1. 
If we define the b periods with a group G of order b and if we assign 
as in the section above to all element of the b periods, one element of 
the natural element {0, 1, 2, ·, b−1} with the surjection g o f then 
polynom P of degree b we have this equality 
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Proof.  
Not yet perfomed but this conjecture do a definition of an integral 

numeric ( )( ) 0P j
jj

as g o f c

ANNEXES 
This script calculate a sum with all their terms in 43 s or calculate the 
same with 1 term over 6 in 6 s 
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