Variant anatomy of superior cerebellar artery and associated clinical implications

Rajani Singh

Superior cerebellar arteries originate from basilar artery just before terminating into posterior cerebral arteries. These arteries travel below the 3rd and above the 4th cranial nerves. Superior cerebellar arteries (SCA) irrigates superior surface of cerebellum and superior vermis. The knowledge of variations in the branching pattern of SCA is essential to neuro-radiologists and neurosurgeons in comprehending vascular malformations, SCA syndrome, handling of lesions of the basilar termination and explaining trigeminal neuralgia. The variations are also valuable to avoid inadvertent ligation or sectioning of these arteries during surgical approaches to the posterior cranial fossa lesions. Due to above mentioned immense clinical implications of these arteries, review of literature has been explored. The study will provide ready and consolidated information for radiologists for interpretation of imagery and neurosurgeons for diagnosing and treating lesions around the superior cerebellar arteries.

Key Words: Basilar artery; Superior cerebellar artery; Cerebellum
Different variations of the SCA including duplication, triplication and its origin from the PCA have been reported previously out of which duplication of the SCA was found in 28% (22), 14% (17), 20% (23), 5.9% (9), and 25% (24), 21.3% (25) of cases. Triplication was also noted in 2% (8,17) and 8% (26) of cases. Bilateral duplication is another variation occurring in 2% cases (9,17). Early bifurcation, fenestration and hypoplastic SCA were noted in 8%, 0.7% and 0.7% of the cases respectively. SCA with diameter of <1 mm was considered to be hypoplastic. The length of the SCA from its origin to its bifurcation into rostral and caudal branches ranged from 6-23 mm (8).

Anoymous and stroke are the most common form of cerebrovascular diseases affecting mankind with a high degree of morbidity and mortality. The presence of arterial variations in SCA can be one of the factors attributed to aneurysms and thrombus formation leading to cerebellar infarcts (8). Infarcts in the superior cerebellar artery irrigation territory are most commonly diagnosed clinically, radiologically and in post-mortem, culminating into limb ataxia along with dysarthria, ataxia, vertigo and vomiting (27). SCA infarcts may produce mass effect and obstructive hydrocephalus. Most of these clinical conditions are accompanied by lesions in neighbouring regions such as the midbrain, the thalamus and irrigation areas of the posterior cerebral artery in 75% of cases (28). Lesion in the SCA may also cause neurobehavioral syndrome, called cerebellar cognitive affective syndrome, characterized by spatial cognitive deficits, visual memory, language, personality and behavioural changes.

The proximal segment of SCA is a potential bypass site for reconstructive and revascularization surgeries for vertebrobasilar insufficiencies (29). The origin of SCA lies within the interpeduncular cistern and the oculomotor nerve is located between SCA and PCA. From its origin the artery curves encircling the brainstem and passes below the trochlear nerve and above the trigeminal nerve (Figure 1). The variations of the course of SCA can alter its relationship with oculomotor, trochlear and trigeminal nerves resulting in compression symptoms (30).

The artery is divided into prepontine segment, ambient segment, quadrigeminal segment and cortical segments (8). The SCA is intimately related to the III, IV and V cranial nerves (Figure 1). Anatomical variations of SCA may therefore present with palsies of these nerves. Tortuous and elongated SCA can compress the trigeminal nerve resulting in trigeminal neuralgia. Microvascular decompression procedure by wrapping technique is the latest treatment used for trigeminal neuralgia (30).

The position of the SCA in the perimesencephalic cistern is a sensitive indicator of tumours located either intrinsic or extrinsic to the midbrain as this segment of the SCA may be displaced medially, posteriorly, anteriorly, or laterally by the avascular masses, meningiomas, aneurysms, arteriovenous malformations, atheromatous disease, or vascular neoplasms. Large extra-axial masses arising from the clivus or the cerebellopontine angle can impinge upon the anterior aspect of the midbrain and displace the first segment of the SCA towards the midline (31) creating various clinical complications.

The BA bifurcation is an important determinant of the initial course of SCA. In the 5.8 mm embryo the BA is formed by the fusion of the longitudinal neural arteries. Lack of normal fusion at the origin of the SCA, during development of the BA from the neural arteries and the PCA which connects the carotid and primitive neural arteries, anastomose with the BA caudally at a point lower than the normal site. These two ontogenetic interpretations explain the variations of the SCA (18).

The revascularisation procedures use rostral or caudal trunks of the SCA. The easy access to these trunks is made through a combined petrosal, lateral supracerebellar-infratentorial, or subtemporal approach. The rostral branch of the SCA is largest trunk having more perforating branches than the main SCA. Caudal trunk, marginal branch and the rostral trunk are more closely related to IV cranial nerve. Thus when the rostral trunk is used for revascularization, there is an increased chance of injury to IV cranial nerve and perforator infarcts (32) leading to ischemia/infarcts in the territory irrigated by perforators and IV cranial nerve dysfunction.

The superior cerebellar artery, an arteriographic landmark to diagnose posterior fossa lesions is important because of its position relative to the upper brain stem and superior cerebellum for the assessment of lesions in and adjacent to these areas. The anatomical variations of the vertebrobasilar system and its branches are of immense use to precisely interpret the ischemic areas and to diagnose lesions during endovascular interventions and posterior cranial fossa surgeries (32).

Arterial bypass procedure can be used in the treatment of vertebrobasilar ischemia, basilar artery stenosis, skull base tumors, and arteriovenous malformation related to posterior circulation. In this procedure PICAs, AICAs, SCAs, or PCAs are anastomosed end-to-end, end-to-side, or side-to-side to the contralateral equivalent arteries or to the extra cranial arteries such as superficial temporal artery and the occipital artery to carry out the revascularization of the neural parenchyma. Large basilar apex aneurysms are treated by double-bore anastomoses of the superficial temporal artery to the superior cerebellar artery (33). The cerebrovascular anatomical variations, interarterial anastomoses, and the haemodynamic situation are the major factors that detect the location and extent of the infarcts. The cause of these infarcts may be embolism or thrombosis in SCA (8).

Variations in origins, diameters, irrigation areas, and anastomoses of the arteries may result into different clinical findings in different cases on interpreting the cause and the outcome of the ischemic events. The unfamiliarity with the common variations of the SCA may lead to misinterpretation and mismanagement of diseases related to SCA (2,24,34,35). Thus the detailed knowledge of variations in SCA and associated clinical implications are of utmost use to radiologists and neurosurgeons.

REFERENCES

10. Pai BS, Varma RG, Kulkarni RN. Microsurgical anatomy of the posterior
A rare observation of mandibular buccal ramus variant of stafne bone defect