Introduction
Variations in the origin of superior thyroid artery (STA) have been reported earlier. STA may originate from common carotid artery or its bifurcation, the incidence of which is 5-45% depending on the population surveyed [1]. The knowledge of these variations in the origin of STA is important for various surgical procedures in the radical neck dissection, thyroidectomy, and catheterization, reconstruction of aneurysm, carotid endarterectomy and interventional radiology.

Case Report
During routine neck dissection of a 35-year-old male cadaver in the Department of Anatomy, Maulana Azad Medical College, New Delhi, the left superior thyroid artery was found to be originating from left common carotid artery (CCA) (Figure 1). The point of origin was 1.5 cm proximal to the bifurcation of common carotid artery into external (ECA) and internal carotid artery (ICA). The STA supplied the superior pole of left lobe of thyroid gland and had a normal relationship with the left external laryngeal nerve. On the right side, the origin of STA showed no variation. Bilateral inferior thyroid arteries were as usual.

Discussion
The STA is the main source of artery to the thyroid gland, upper part of larynx and neck region. It arises from ECA just below the greater horn of the hyoid bone. It then runs downward from its origin and gives a branch, the superior laryngeal artery that pierces the thyrohyoid membrane along with internal laryngeal nerve. It also gives an infrahyoid branch, a branch to the sternocleidomastoid and a crico-thyroid branch [2].

Lucev et al. [3] reported that the STA arises more often from the CCA in 47.5% cases; 16% of cases by Hollinshead [4] and in 10% of cases by Banna and Lasjaunias [5]. Very few literatures regarding the low origin of STA is available with respect to Asian subcontinent especially in India. Previous studies indicate that a low origin of STA is more common in females than in males [1]. In the present case, the low origin of STA was reported in a male cadaver. Vandana et al. reported origin of STA 0.5 cm proximal to bifurcation of CCA [6]. They also reported absence of right STA. But in our case, the right STA was present and normal in morphology. Previous reports also indicate that the origin is very rarely more than 1 cm proximal to the bifurcation [6, 7]. The present

Abstract
Variant anatomy of superior thyroid artery is important for surgeons while conducting neck surgeries. In addition, its relationship with the neighboring nerves and other blood vessels is important to assess the outcome of thyroid surgery. The present case reports a variation in the origin of left superior thyroid artery from left common carotid artery during routine dissection of a 35-year-old male cadaver. The right superior thyroid artery and inferior thyroid artery on both sides were normal. It exhibited normal relationship with the left external laryngeal nerve. Previous reports indicate that the origin of superior thyroid artery is very rarely more than 1 cm from carotid bifurcation. The present case appears to be more proximal than those reported in Indian literatures. Knowledge of variation in the anatomy of superior thyroid artery has much academic and clinical value.

Key words [variation] [left superior thyroid artery] [left common carotid] [carotid bifurcation] [thyroid gland]
case reports a more proximal origin of STA, 1.5 cm from the carotid bifurcation.

Most of the cases reporting the low origin of STA are associated with a high level of CCA bifurcation [8, 9]. In the present case, STA was arising from the CCA that was terminating at the normal level, i.e., at upper border of thyroid cartilage.

Knowledge of surgical anatomy of the STA ensures maintaining a bloodless field during major radical neck dissection surgeries to minimize postoperative complications [10]. Variations in the origin of superior thyroid artery are important in preoperative selective arterial angiograms to map out the vascularity and the true extent of the tumors of the head, neck and face [9]. Additionally, danger of injuring atypically originating large cervical arteries during operations on the thyroid gland is possible. Hence, it is important to know the anatomy and possible variation of STA for having a safe and effective surgery.

Conclusion

Lack of experience with possible variations could lead to fatal errors if one blood vessel is mistaken for another. It is imperative for surgeons to know the variations in the surgical anatomy of STA to maintain a bloodless surgical field and to avoid post-operative complications. Possible influence by ethnicity and gender on the presence, origin, and course of STA can be studied in a larger population in India, to have a more consistent and significant data.

References