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THEORY 

Weyl Scale factor as a global dynamic variable in physics 
to eliminate the infinities in Quantum Theory 

Qiubao Pan 

BACKGROUND 
uantum mechanics and relativity theory are the two great
discoveries of the 20th century in physics. Quantum 

electrodynamics is the application of quantum theory to 
electromagnetism. There are a limited number of infinities in the 
perturbation theory of quantum electrodynamics which are removed 
through the renormalization theory [1]. A very straightforward next 
step in modern physics would be applying the quantum theory to 
gravitation, and quantum gravity.  
Unfortunately, in the quantum perturbation theory of gravitation, 
there are many different infinities which were not able to be 
renormalized [2, 3]. Even though the super-string theory does not suffer 
from ultraviolet divergences caused by shrinking one of the internal 
lines of the Feynman diagram to zero. But the string theory up to date 
is still a mathematical collection of folklore, rules of thumb, and 
intuition [4]. 

As we recall, in the early development of the theory of quantum 
mechanics, in the blackbody radiation theory there is also ultraviolet 
divergence. The Planck term with exponential convergence in the 
blackbody radiation was introduced to describe the elementary particle 
behavior which is different from that of macro objects. The author 
thinks that a new theory by re-visiting the emitting property of virtual 
particles of current quantum theory may lead to a rediscover of the 
quantum interior structure of elemental particles. Within the current 

quantum physics domain, because the perturbation terms are a 
combination of energy-momentum terms kn where n is an integer of 
greater than zero or less than zero, there is no way to remove the 
infinities when integrating the perturbation term overall energy 
momentum because the integrand goes to infinite when k goes to 
infinite (zero) when n greater than zero (less than zero).  

The best way to solve these infinite problems is to re-introduce the 
Planck-type term to all perturbation theories of QED, QCD and 
Quantum Gravity. However, the current physics equations do not 
allow to introduction of such a term. Also, in the quantum mechanics 
domain, the electron in the atom does not radiate the electromagnetic 
waves in the ground state.  

The Feynman diagram of free electron emits virtue particles and re-
absorbs back. To maintain the electron in the ground states and to be 
consistent with the classic theory of electromagnetism, as extension of 
blackbody radiation theory, the virtue particles emitted shall be limited 
to a certain pattern about the wavelength just like the blackbody 
radiation, not equal opportunity for all energy-momentum of virtual 
particles.  

However, the Dirac Theory cannot add another term to the 
perturbation theory. In this paper, we would like to propose a new 
Weyl-type scale factor which allows a new Planck-type term to be 
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ABSTRACT 
In the Quantum Electrodynamics (QED), the perturbation propagators 

do not all have the same Weyl scale weight when integration is carried 

out over all momentum spaces. A dynamic scale factor is introduced to 

all dynamic variables in physics in this paper. The requirements for 

physics equations, including the Maxwell equations to be invariant under 

scale factor transformation is investigated. If a Planck type term with 

energy momentum dependence (not coordinate dependent) as scale 

factor is introduced to the propagator of QED, the renormalization theory 

is no longer needed. Instead of inventing different scheme of removing 

infinites, more experimental data collection is needed to determine the 

scale factors for different scenarios. The scale factor can also be 

introduced through replacing the momentum by a re-gauged momentum. 

Another approach of introducing the scale factor is to replace Fourier 

Transformation by Laplace Transformation in all quantum mechanics. 

The quantum gravity self-interaction terms shall no longer be infinite by 

choosing different scale factors.  
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introduced into all physics variables. 

All possible scale factor is analyzed for different physics equations. This 
new scale factor will be convergent in the ultraviolet limit and infrared 
limit. Just like quantum mechanics, this Planck type of term can be 
used to study the virtue particle relationship with the elemental 
particles and hopefully, this scale factor can be used to study the sub-
structure of elemental particles.  

Dirac and many other authors have introduced the Weyl theory to 
gravitation and cosmology [5,6]. The interpretation of the Weyl gauge 
field has not been properly defined in different areas of physics. When 
Weyl introduces the gauge field, the field is introduced through a 
geometrical object, the metrical tensor to transforms like 

2
v vµ µλ− >g g to make affine connection invariant. It is equivalently, 

2 2 2d s d sλ− − > .

ds has much more implication in physics to metric tensor which is used 
as a geometrical representation of gravity. To the author, 𝜆𝜆 may 
connect different inertial systems as a global variable. 

Thought experiment: Physicist A in the laboratory, chose to accelerate 
an electron, the electromagnetic field path through a thought 
membrane (a) around the electron is adsorbed by the electron. Another 
physicist B tried to accelerate the laboratory, large amount of 
gravitational field passes through the thought membrane (b) around 
the laboratory, which excludes the electron and the membrane (a). To 
an observer C sitting on the membrane (a), sees no field pass through 
his membrane (a) when physicist B accelerate the laboratory.  

Both systems are equivalent kinematically to observer C if observer C 
does not care about the history of the field passing through the 
membrane. This “hardness” difference between physicists A and B as 
well as the history of the field passing through the membrane (a) may 
mean a global property difference of the inertia system reflected by 𝜆𝜆. 
In the later section of this paper, we will define a scale weight based on 
ds to re-visit most of the dynamic variables and some of the field 
equations. 

THE SCALE FACTOR FOR DIFFERENT VARIABLES 
Weyl’s theory defines the metrical tensor transformation as follows: 

2
v vµ µλ− − >g g  

where 𝜆𝜆(𝑥𝑥, 𝑝𝑝) is a complete arbitrary scalar function of position or 
momentum. (𝑥𝑥, 𝑝𝑝) can be a complex number to also include the phase 
factor of quantum mechanics. A variable Z is invariant under this 
transformation and shall not change (Weyl co-tensor weight 0), or 

0 ZZ Zλ− − − − > =  

The affine connection: 

v vg g
v

α α α αβ
µν µ ν µ µ β

α
δ δ

µ
 

Γ = + + − 
 

ф ф ф   (1)

is invariant under transformations 
2

v vµ µλ− − >g g   (2.1) 

And 

lnµ µ µ λ− > −∂ф ф    (2.2)

The curvature tensor Rα
µνΦ and Rµν  are a typical invariant for Weyl

theory, a cotensor of gauge weight 0. 

When Weyl proposed the transformation, he had the unification of 
gravitation and electromagnetism in mind. 𝜙𝜙𝜈𝜈 serves as 
electromagnetism potential and 

v
vF

x x
µ

µν µ

∂ ∂
= −
∂ ∂
ф ф is Weyl transformation invariant by definition. 

Equation (2.1) 2
v vg gµ µλ− − >  leads to ds ----> λds. The change of ds 

has far more implications than in gravity. 

In special relativity ds is invariant between different inertial systems 
and for general relativity, ds varies at different spacetimes, locally we 
can define an inertial Minkowski system, but ds is different for 
different spacetimes. ds can be eliminated from the kinematics which 
ds is not observable. But in the dynamics, ds may have implications for 
the global properties. 
In this paper, a scale factor weight (to be different from Weyl gauge 

weight) is defined based on its relationship with ds. 𝑥𝑥𝜇𝜇 and 
xµ
∂
∂

is 

defined to be zero scale factor weight. 
If charge q has a scale weight of zero, 𝑗𝑗𝜇𝜇 shall have a scale weight of -3 

because ∫�𝑔𝑔𝑑𝑑3𝑥𝑥𝑗𝑗0 = 𝑄𝑄  (�𝑔𝑔 in 3-space has a scale weight of 3). By 

the same argument, if mass m has a scale weight of zero, 𝑇𝑇𝜇𝜇𝜇𝜇 has a scale 
weight of -3 because 3 00xTd M=∫ g

From Einstein’s field equation: 

1 8
2ij ij ijR g R GTπ− = −

G has a scale weight of -1 (Table 1). 
Table 1: The scale weight of Common dynamic variables for 
electromagnetism and gravitation 

Variable Scale weight Variable Scale weight 

Aµ -1 pµ -1
Aµ 1 pµ 1 
gµv 2 Fµv 1 
gµv -2 Fµv -3
Jµ -3 Tµv 1 
Jµ -1 Tµv -3

Rµv 0 R -2
G -1 Lµv 1 

Lµv -3
In quantum mechanics, 

p i
xµ µ

∂
=

∂
фф ћ    (3)

To bridge the relationship between quantum mechanics and classic 
dynamics, ℏ must have a scale weight of +1. 
In the Schrödinger equation, If 𝜙𝜙 is defined has a scale weight of +1 
just like the gauge theory, 𝜙𝜙∗ has a scale weight of -4 because of the 

* 3 1d x =∫фф g

For the Dirac wave function, if 𝜓𝜓 has a scale weight of +1,𝜓𝜓� has a scale 

weight of -3 because μ μJ =ψγ ψ has a scale weight of -3. There are other 

possible definitions of scale factor weight for wave functions. The 
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following is the list of the scale weight of quantum variables (Table 2). 

Table 2: The scale weight of quantum field theory 

Variable Scale weight Variable Scale weight 

ℏ +1 𝜙𝜙∗ -4 

Aµ -1 𝜙𝜙 +1 

Aµ +1 γµ +1 
pµ +1 γµ -1 

pµ -1 

Dirac 
wave 

function 
𝜓𝜓 

+1 

Jµ -3 ψ 3 

Jµ -1 𝑘𝑘µ 0 
Tij +2 𝑘𝑘µ -2 

Klein-Gordon equations are not invariant unless are constant or satisfy 
a certain relationship. Also, the Lagrangian L for several fields has a 
scale weight of non-zero. We will analyze the impact of scale-invariant 
requirements on to the different field equations. 

Due to the assumption that mass and charge have zero scale factor 
weight, the momentum of virtual photon 𝑘𝑘𝜇𝜇 has zero weight of scale 
factor because it is a partial derivative of the 𝐴𝐴𝜈𝜈 in the 𝑥𝑥𝜇𝜇 direction. 

Weyl’s first introduction of the transformation Eq.(2) is to interpret 
the 𝜙𝜙𝜇𝜇 as electromagnetism in the affine connections. From our scale 
factor weight analysis, 𝜙𝜙𝜇𝜇 is scale weight zero based on the definition 
of affine connection as in Eq.(1) while 𝐴𝐴𝜇𝜇 has scale weight 1 from Table 
1.  

Now, most physicists have given up Weyl’s original idea of 𝜙𝜙𝜇𝜇 as 
electromagnetism potential. 
Einstein’s objection to the Weyl theory is as follows: When a vector is 
transported, the length of a vector would change： 

dS=S dxµ
µф  (4) 

Integrating equation (4), we get 

0 expS S dxµ
µ= ∫ф   (5) 

Where S0 is the length a vector would have in the absence of 𝜙𝜙𝜇𝜇 field. 
Einstein noted that vector length can be made proportional to the 
ticking of a clock by transporting the vector along a closed curve. If 𝜙𝜙𝜇𝜇 
has a different value from point to point, the clock’s setting would 
change more and more with time. The spacing of atomic spectral lines 
would be depending on their history and be subject to change with 
unpredictable results. Since reality is not the case, Einstein declared 
Weyl’s theory to be unphysical. 

In this paper, a scale factor is defined like Weyl’s proposal. For those 
variables or equations which cannot be scale invariant choosing the 
right scale factor, is not observable in quantum mechanics. There are 
variables, like the momentum which is not observable. The 
introduction of the scale factor to the physics variables may explain 
which variables are not observable and which variables are observable 
in quantum mechanics. 

It is easy to clear up Einstein’s objection to Weyl’s proposal by 
requiring that 

2dx i nµ
µ π=∮ф     (6) 

Then eq.(5) would lead to S invariant. It is easy to derive that a single 
electron circulates the proton in the time t with an orbit of Bohr radius 
(Ref. 7). It is easy to derive using the simple Bohr model that 

0 0
ie A
c

=ф
ћ

 (7) 

From our scale weight analysis, 𝜙𝜙𝜇𝜇 has a scale weight of 0, 𝐴𝐴𝜇𝜇 and ℏ 
both have a scale weight of 1. It is acceptable to assign 𝜙𝜙𝜇𝜇 like Eq.(7) 
which has a scale weight 0. 

THE SCALE FACTOR FOR SCALE-INVARIANT MAXWELL 
EQUATIONS 
Aµ has a scale weight of +1, and the field variable 𝐹𝐹𝜇𝜇𝜈𝜈 will vary as 
follows: 

𝐹𝐹𝜇𝜇𝜇𝜇 =
𝜕𝜕𝐴𝐴𝜇𝜇
𝜕𝜕𝑥𝑥𝜇𝜇

−  
𝜕𝜕𝐴𝐴𝜇𝜇
𝜕𝜕𝑥𝑥𝜇𝜇

===> 

v
v v v

A AF A A
x x x x
µ

µ µ νµ µ

λ λλ
∂ ∂ ∂ ∂

= − + − ∂ ∂ ∂ ∂ 
         (8) 

Obviously from Eq.(8), besides λ = constant, if A dxµ
µδλ ∝ ,Fµv will 

be linear in the scale factor λ. 
The scale factor requirement (see (9) of the following) for field variable 

to be linear in scale factor λ 

A dxµ
µδλ ∝  (9) 

is an interesting conclusion because this is same as the Randers’s metric 
and the same term appears in Eq.(6). 
For the Maxwell equation: 

v vF Jµ
µ∂ = −

The formal equation with gµν to raise and lower the index shall be 
written as 

2 1 3( )v vg F Jρ µθ
µ θρλ λ λ− − −∂ = −g  

For the Maxwell equation to be invariant, 
1( ) 0µθ

µ λ−∂ =g        (10)

Is needed. Using the Eq.(9), Eq.(10) can be rewritten as: 

0A g µθ µθ
µ µλ− + ∂ =g

One of the choices for gµν is: 
A dxv e

δδ
µ µν λη ∫=g  (11) 

Which will make Maxwell equation invariant 
v vF Jρ µθ

µ θρ∂ = −g g

The extra term
A dx

e
δδ

λ∫ embedded in the gµν is interesting because of its 

similarity to Eq.(6). We will come back to this term in another paper 
exploring the origin of quantum mechanics. Eq.(11) indicates that 
Maxwell is scale invariant in the conformal flat space-time, the scale 
factor defined in this present paper is a conformal factor. 

If the term 2A dx i nδδ π
λ

=∫ , gµν is equal to 𝜂𝜂𝜇𝜇𝜈𝜈. From Eq.(6) we see 

that c
ie

λ =
 . This complex scale factor assumes converting the Fourier
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Transformation to the Laplace Transformation is reasonable in 
Quantum Mechanics. 
The other part of Maxwell’s equation is: 

' , , 0p v vF F Fµν ρ µ ρµ+ + =   (12) 

Eq.(12) is scale-invariant by substitution of 

v
vv v

A AF A A
x x x x
µ

µν µµ µ

λ λλ
∂ ∂ ∂ ∂

= − + − ∂ ∂ ∂ ∂ 
 

into the above Eq.(12) without assumption of any property of scale 
factor 𝜆𝜆. With the choice of Eq.(10), the Maxwell equation is scale 
invariant for both parts of the Maxwell equations. 

THE SCALE FACTOR OF SCALE-INVARIANT QUANTUM 
MECHANICS VARIABLES AND THE DIRAC EQUATION 
Eq.(3), the definition of quantum momentum, is not invariant because 
after the scale transformation, 

( )ln
x

p ii µµ µ λ−= −
∂

∂
∂
 

фф ф      (13)

It makes sense that the momentum in quantum mechanics is not 
observable because −𝑖𝑖ℏ(ln𝜆𝜆)𝜙𝜙 is zero only when 𝜆𝜆(𝑥𝑥, 𝑝𝑝) is constant or 
is a function of momentum only. 

If 𝜆𝜆 is a function of momentum (𝑝𝑝) only, then 
1p p ( )pµ µλ−− − >  

The ∫ d4𝑝𝑝 becomes ∫λ−4(𝑝𝑝)d4𝑝𝑝 after the transformation. In section 8, 
we will use this re-gauge of the momentum to replace renormalization. 
In consideration of the scale weight of ℏ and 𝜙𝜙, the Klein-Gordon 
equation is varied as: 

22p p v

g

x
m x

µν

µ
µ

µλ λ λ

∂ ∂  ∂ 
∂

= = -

ф

ф ф

( )
2

ln

v

g
x

x

µν
µ

λ

λ∂ 
∂  ∂ −

∂


ф
 (14) 

If last term of Eq.(14) is zero, Eq.(14) becomes the standard Klein-
Gordon equation 

2 2 0( )mµ
µ∂ ∂ + = ф  

Define a vector ln
x µµ

λ∂
= Λ

∂
, the Klein-Gordon equation is invariant if 

the 

( ) 0g µν
ν µ∂ Λ =ф   (15) 

Eq.(15) has a solution of 
1g µν µνη −= ф  (15.1)

And 
xe
µ

µλ Λ=  (15.2) 

where Λ𝜇𝜇 is only a function of momentum p. Eq.(15) will be re-visited 
in the future paper regarding the origin of quantum behavior of 
particles. Eq.(15.2) indicates if Λ𝜇𝜇 is a constant vector, then 𝜆𝜆 will make 
the equation (13) become a Laplace transformation instead of the 
Fourier transformation. 

Schrodinger equation, 
22

22
E V

m x
∂−

= +
∂

 фф ф

is scale invariant if 

( ) 0ij
i jg∂ Λ =  where i or j =1,2 or 3. Please note that E in Schrodinger

equation is scale 0 because E is part of the 𝑝𝑝𝜇𝜇𝑝𝑝𝜇𝜇. E shall be observable 
because the Schrödinger equation is invariant with the right choice of 
scale factor, metric tensor and wave function satisfying  
(𝑔𝑔𝑖𝑖𝑗𝑗Λ𝑗𝑗) = 0. 

In the relativity theory, the metric tensor is related to the measurement 
of physics quantities, the scale factor is a re-gauge of the metric tensor, 
and the study of Eq. (15) may reveal something interesting regarding 
the quantum behaviour from the geometric point of view. 
In current physics, for both the Dirac equation and the Schrodinger 
equation: 

P P eAµ µ µ→ +

With the hope that the transformation of 

lnA Aµ µ µ λ→ −∂  

will give the same dynamic results. But as we know the success of 
Aharonov and D.Bohm’s experiment indicates that 𝐴𝐴𝜇𝜇 is a dynamic 
variable instead of a mathematical object [8]. The scale factor defined 
in this present paper and the gauge factor can be the same as in the 
quantum mechanics for the wave function. But in this paper, other 
variables are also assigned different weights of scale factor. Also, 𝜆𝜆 can 
have other choices besides the gauge theory. 

For the Dirac Equation, 

( ) 0i mµ
µγ ψ∂ − =       (16) 

If the Dirac wave function has a scale weight of +1, the condition for 
the Dirac equation to be scale invariant is: 

( )( )ln 0µ
µγ λ ψ∂ =   (16.1) 

Put in the Dirac 𝛾𝛾-Matrix, the solution for the Dirac equation to be 
invariant, is that the scale factor must meet the following conditions: 

( ) ( )22
t xλ λ∂ = ∂   

That means that the scale factor 𝜆𝜆 satisfies the zero mass Klein-Gordon 
equations. The boundary conditions in the quantum mechanics 
equations determine the value of 𝑘𝑘𝜇𝜇. If 𝜆𝜆 is only a function of the 
momentum, Eq.(16.1) is also automatically satisfied. We see again that 
the scale factor is a dynamic variable that describes the behaviour of 
particles in the momentum space. 

THE SCALE FACTOR FOR THE EQUATION OF MOTIONS 
In the classic equation of motion, time is used as a parameter, the 
classic equation of motion will all be invariant under this scale factor 
transformation because the scale factor is the weight of ds, the four-
dimension distance. The equation of motion for Lorentz force, 

2

2 0
vd x dxm F

d d

µ
µ
ντ τ

+ =   (17) 

After the scale factor for the momentum is introduced, there will be an 
additional term: 

2

2

ln 0
vd x dx d dxm F m

d d d d

µ µ
µ
ν

λ
τ τ τ τ

+ + =     (18) 
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By changing d𝜏𝜏 to d𝜏𝜏 ′, the last term can be re-adsorbed to d𝜏𝜏 ′ and eq. 
(18) become eq. (17). The trouble is that if there are different forces, 
the scale factor transformation invariant cannot all meet at the same 
time.  
It is interesting to combine the electromagnetic force and gravitational 
force to study 𝜆𝜆 transformation behavior of the equations of motion. 

The equation of motion for general relativity, 
2

2 0
v

v
d x dx dx
d d d

µ ρ
µ
ρτ τ τ

+ Γ =   (19) 

After the scale factor for the momentum is introduced, there will be an 
additional term: 

2

2

ln 0
v

v
d x dx dx d dx
d d d d d

µ ρ µ
µ
ρ

λ
τ τ τ τ τ

+ Γ + =    (20)

By changing d𝜏𝜏 to d𝜏𝜏 ′ , the last term can be re-adsorbed to ⅆ𝜏𝜏 ′ and Eq. 
(20) become Eq.(19). For general relativity, Equation (20) can be 
written like Equation (19) if 

( )1
2v v

α α α
ρ µ ν µ

α
δ δ

µν
 

Γ = + Λ + Λ 
 

    (21) 

Where ln
v vx

λ∂
Λ =

∂
 

Even though the equation of motion can be invariant under the scale 
factor transformation, the scale factor defined in this paper will have 
an impact on the value of the physics quantity observed as the scale 
factor transformed. We will come back to do the analysis of Eq (21) in 
the Self-Interacting Field theory (SI field theory) to be published later 
by the author 

SCALE FACTOR FOR CONTINUITY EQUATION 
The continuity equation: 

0J µ
µ∂ =  (22) 

The extra term introduced is 

3 0J Jµ µ
µ µ∂ − Λ =  (22.1) 

From Eq.(22.1) we see that as long as the gradient of the scale factor is 
perpendicular to the current, the continuity equation is invariant. If 
the current is proportional to the 4-energy momentum, and the 
gradient of the scale factor is also proportion to the 4-energy 
momentum, the continuity equation is invariant for the 4 energy 
momentum magnitude is zero, like the zero mass Klein-Gordon 
equations. 

THE SCALE FACTOR FOR ANGULAR MOMENTUM 
The classic angular momentum 

ij i j j iL x p x p= −      (23)

is linear in scale factor if weight +1. But there is an extra term for 
quantum angular momentum, 

' 2 ( ) ( )ij i j i jj i j iL i x x i x x
x x x x
φ φ λ λλ λ φ∂ ∂ ∂ ∂

= − + −
∂ ∂ ∂ ∂

ħ ħ   (23.1) 

After some algebra, in order for the amplitude of the quantum angular 
momentum to be invariant under the scale factor transformation, 

( ) 0vg µ
δ µφ∂ Λ =    (23.2)

and 0yµ
µΛ =  (23.3) 

Eq.(23.2) is similar to Eq. (15). For quantum angular momentum to be 

scale factor invariant, Eq.(23.3) is needed and Eq.(23.3) indicates that 
Λ𝜇𝜇 is perpendicular to y. 

In Summary, from section 3 to section 7, we see that all physics 
equations are partial derivative of space and time. If an energy 
momentum dependent scale factor is introduced, all physics equations 
are invariant under this scale factor transformation of which only 
depends on energy momentum, not on coordinates. The current way 
of introducing the energy momentum dependent scale factor to all 
physics observables is a more natural way to remove infinites and to 
describe the emitting patterns of virtual particles. The new quantum 
physics by introducing this scale factor with Planck type of terms may 
reveal many insights of elemental particle properties. 

THE SCALE FACTOR OF PLANCK TYPE TERM TO REPLACE 
THE RENORMALIZATION 
Following the notation of Francis Halzen and Alan D. Martin in 
Quarks & Leptons: An Introduction Course in Modern Particle 
Physics [9] (Figure 1): 

Fig. 1 Electron self-energy 
The mass correction term 

( )
( )

( ) ( )( )4
2

.4 2 2

. 1 |
2 .2

v
m v i p m

i p k md kie
p k k k γ

γ
γ γ

π
=−

 − + ∂ = −  − +  
∫ (24) 

The 𝑘𝑘2 has scale weight of -2 and d4𝑘𝑘 has scale weight of -4, thus the 
𝛿𝛿𝛿𝛿 has the scale weight of -2. But mass has the scale weight of zero. 𝜆𝜆2 
must be included in the integration into the mass correction 𝛿𝛿𝛿𝛿. 
Note that √𝑔𝑔 in the momentum space has zero scale factor weight. The 
green’s function of Dirac equation: 

( ) ( )4 '
Fi m G x xµ

µγ δ∂ − = −  

Which indicates that 𝐺𝐺𝐹𝐹 has the scale factor weight of -4. Fourier 
transformation of green’s function to momentum space: 

( ) ( ) ( )' 4.'
4

1
(2 )

ip x x d p
F FG x x S p e

π
− −

− = ∫  

Where 

( )
1

FS
p mµ

µγ
=

−

Thus, the momentum space integration has scale factor weight of -4. 
Eq.(24) is divergent in large 𝑘𝑘2. Recall that in the blackbody radiation 
discovery in the early 20th century, radiation energy distribution as a 
function of frequency is divergent in ultraviolet frequency. Planck 
introduced the quantum behavior of radiation frequency in a cavity to 
bring the Planck term to the frequency distribution. The introduction 
of the scale factor of Planck type for the 𝛿𝛿𝛿𝛿 will converge the 𝛿𝛿𝛿𝛿. 

Assume the virtual particle 4-momentum square 𝑘𝑘2 has the role of the 
frequency of radiation, the parent particle has the role of cavity while 
the 4-momentum square of the electron 𝑝𝑝2 = 𝛿𝛿2 as the role of 
temperature, a Planck term of the following pattern can be introduced 
to the propagator, and then integration over the virtual particle four-
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momentum space d4𝑘𝑘 is no longer divergent for 𝛿𝛿𝛿𝛿 propagator 

𝜆𝜆2 =
𝑘𝑘4

𝑚𝑚4

�𝑒𝑒
�𝑘𝑘

2
𝑚𝑚2�−1�

2  (25) 

Both the electron and virtual photon can be the radiation role of the 
“Blackbody radiation”. At large k, this Planck-type term will converge 
the 𝛿𝛿𝛿𝛿. 

The vacuum polarization 
In the vacuum, the photon has 4-momentum q and can fluctuate into 
an electron-positron pair which is called vacuum polarization (Figure 
2).  
The polarization propagator is: 

(26) 

Fig 2: Vacuum Polarization 
It is clear that this polarization propagator is divergent to the order of 
p square. A Planck type term is needed in to make the Vacuum 
polarization convergent. I(𝑞𝑞) is supposed to have zero scale factor 
weight, but Eq. (26) has a scale factor of -2. 𝜆𝜆2 is needed to make I(𝑞𝑞) 
having the correct scale weight [9]. 

Assume 𝑞𝑞2 is like the blackbody temperature parameter T in the cavity, 
and the electron-positron pair is like the “blackbody radiation”. Only 
one of the electron-position pair is the “Blackbody radiation”, the other 
is the continuation of the virtual photon, a Planck type of scale factor 
of the following type can be introduced to the propagator: 

𝜆𝜆2 =
�𝑝𝑝2+𝑚𝑚2�

2

𝑞𝑞4

�𝑒𝑒
�𝑝𝑝

2+𝑚𝑚2
𝑞𝑞2

�
−1�

2     (27) 

Due to the integration, choosing one of the electron-positron 4-
momentum as the numeration will not change the integration results. 
This scale factor 𝜆𝜆2 goes to zero when 𝑞𝑞2 goes to zero compared with 
electron mass even 𝑝𝑝2 is zero or large. Even when 𝑞𝑞2 is large, the 
integration over 𝑝𝑝2 is still finite because Eq.(27) will converge due to 
the denominator will become zero at infinite of 𝑝𝑝2.  

Detailed calculations of the Vacuum polarization can be very 
interesting. There are also other choices of 𝜆𝜆2 which will reflect the 
internal property of virtual photons. If the photon is on the zero-mass 
shield (𝑞𝑞2= 0), 𝜆𝜆2 is zero, the propagator integration is zero. This 
analysis indicates that the real photon, will not cause the vacuum 
polarisation. 

The vertex correction term (Figure 3): 

Fig 3. Vertex correction 

( )
( )

4
2'

4( , )
2
d kp p eµ
π

Λ = − ∫

( ) ( )( ) ( )( )
22 ' 2

'

2 2 ' 2

..
|

2 . 2 .
v

p p m

i p k mi p k m
p k k k p k k

ν
ν

γγ γγ γ
= =−

 − − +− − + 
 − + − +  

(28) 

The vertex correction term has a scale factor of -1. But the vertex 
correction is 

µ µ µγ γ→ +Λ
That means Λ𝜇𝜇 needs to be scale factor weight +1. Thus, 𝜆𝜆2 must be 
included in the integration to make Λ𝜇𝜇 to have equal scale factor weight 
of 𝛾𝛾𝜇𝜇. 

Eq.(28) is divergent at both large and small values of 𝑘𝑘2. In this vertex 
correction, the electron can emit the virtual photon with momentum 
k, like Eq.(24), and the virtual photon can adsorb the electron and 
become another electron, like Eq.(27) of the vacuum polarization. The 
choice of the scale factor can be as follows (the combination of the 
vacuum polarization and electron-self energy): 

𝜆𝜆2 =
𝑘𝑘2

𝑚𝑚2

�𝑒𝑒
�𝑘𝑘

2
𝑚𝑚2�−1�

𝑝𝑝�
2

𝑘𝑘2

�𝑒𝑒
𝑝𝑝�
2

𝑘𝑘2 −1�

= 1

�2−𝑒𝑒
�𝑘𝑘

2
𝑚𝑚2�−𝑒𝑒

�𝑚𝑚
2

𝑘𝑘2
�
�

 (29) 

Where  𝑝𝑝�2 = 𝛿𝛿2  is used. The beauty of the Planck type term in

Eq.(29) is that when k is small, the 𝑒𝑒�
𝑘𝑘2

𝑚𝑚2� in the denominator will 

become infinite while 𝑒𝑒�
𝑘𝑘2

𝑚𝑚2� is close to 1, when k is large, the 𝑒𝑒�
𝑘𝑘2

𝑚𝑚2�in 

the denominator will become infinite, while 𝑒𝑒�
𝑘𝑘2

𝑚𝑚2� becomes 1. 

The is scale factor 𝜆𝜆2 will make the vertex correction term converge for 
either small k or large k. Since Eq.(25), Eq(27) and Eq(29) are all 
independent of x, the coordinate, all the above-mentioned scale factor 
transformation invariant condition is satisfied. This is the reason the 
author thinks that the scale factor is a dynamic variable instead of a 
coordinate variable. It only limits the behaviour of the dynamics. The 
Planck-type terms Eq.(25), Eq(27) and Eq(29) will allow the study of all 
the Feynman diagram corrections to the mass and electric charge 
possible. By studying the behaviour of virtual particles, it will be able 
to reveal the inside structure of the elemental particles. 

DISCUSSION ON QUANTUM MECHANICS WITH LAPLACE 
TRANSFORMATION 
The scale factor invariant has three kinds of solutions:  
The first group of solutions: 𝜆𝜆 is a constant and can be normalized to 
1. This is what the current physics assumes.
The second group of solutions: First order derivative of 𝜆𝜆 concerning 
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𝑥𝑥𝜇𝜇 is zero, or 𝜆𝜆 = (𝑝𝑝). This solution is interesting because it may reveal 
the re-gauge of momentum for the dynamic system. This solution of 𝜆𝜆 
can be used to remove the infinities in QED, QCD and quantum 
gravitation and to study the sub-structure of elemental particles 
including virtual photons. 

The third group of solutions: Different combination of derivations of 
𝜆𝜆 with metric tensor 𝑔𝑔𝜇𝜇𝜈𝜈 or 𝛾𝛾𝜇𝜇 or other physics variables. Since metric 
tensor is unique in general relativity, we will come back to this topic in 
a later paper. These different solutions can be applied to a different 
fields of physics to see the implications of the scale-invariant 
transformation. 

Recall that the Lorentz transformation and its invariance of physics 
laws lead to the special relativity and covariance of physics laws. It puts 
time and space into a coherent and equal footing. The Lorentz 
transformation put physics law into a more elegant format. Another 
transformation is the gauge transformation of the wave function in 
quantum mechanics. It links quantum mechanics to electromagnetism 
by requiring the wave function to be phase invariant under the gauge 
transformation. 

When Weyl introduces the gauge transformation of the metric tensor, 
his purpose is to bring the electromagnetic field to Einstein’s field 
equations. Weyl’s metric tensor transformation was before the gauge 
transformation of wave function. The scale factor transformation 
defined in this paper is the extension and redefinition of Weyl 
transformation to all physics equations. Lorentz transformation and 
Gauge transformation are space-time invariant. This second group 
solutions of scale factor invariant put the limit on the “radiation” 
distribution (virtual particles) which may reflect the sub-structure of the 
dynamics of the “Cavity” (elemental particles). 

The quantum mechanics operator is from the definition: 

p i
xµ µ

φφ ∂
= −

∂


 

If the scale transformation is introduced, and it is only a function of 
momentum, 

( )0p i p
xµ µ

φφ λ ∂
= −

∂


 (30) 

Where ℏ0 is the Planck Constant. The wave function can be found 
through a regauged momentum space Fourier Transformation or 
Laplace transformation. If 

( ) ( )0
1 1 i f p
pλ

= −   (31) 

wave function of Eq.(30) can be write as: 

0 0
( ( ) ) ( )i ip x f p p x p x x

e e
µ µ µ µ

µ µ µ µσ
φ

+ +

= = 

which is Laplace transformation with 

0 0

( )i iS p f p p pµ µ µ µ µσ= + = +
 

From last a few sections’ analysis, the physics variables can be re-gauged 
by a scale factor in momentum space during the Fourier 

transformation so that ln 0
xν
λ∂
=

∂
. The scale factor invariant in physics 

leads to the conclusion that all variables is limited in momentum space. 

Quantum mechanics shall be studied under Laplace transformation. 
The value or magnitude of 𝑠𝑠𝜇𝜇 describes the momentum distribution of 
the emitting virtual particles. 

The final form of scale factor needs to be determined by experiments. 
For the electron self-energy and vacuum polarization, the scale factor 
can also take the format like the Eq.(29) for the emission and 
adsorption with the different 𝜆𝜆(𝑝𝑝) and 𝜆𝜆′(𝑝𝑝). In the Vertex Correction, 
the adsorption of the virtual photon can be by different electrons. Due 
to the space time scale may be different for virtual particles from the 
inverse Laplace Transformation, there may be many different energy-
momentum virtual particles are being transferred in our space-time 
scale:  

Given the Laplace transform X(s), the original space-time can be 
obtained by the inverse Laplace transform, which can be derived from 
the corresponding Fourier transformation with a new scale of space-
time. We first express the Laplace transform as a Fourier transform: 

( )
0

( ) ( )iL f x X s X pµ
µ µσ  = = + 



0
( ) ( )4( ) ( ( ) )

i p x x xf x e d x F f x e
µ µ

µµ µ
µ

σ σµ µ µ
+∞

−∞
=∫ 

 (31) 

If f(𝑥𝑥𝜇𝜇) = 𝑥𝑥𝜇𝜇, the space-time is regauged by a factor of 
( )xe

µ
µσ . If 

( )xe
µ

µσ is small, like 10-5, the time will be much smaller than our time. 

The virtual particles can travel in a re-gauged space-time like in Figure 
4 which two or many more equal virtual photons are exchanged but 
travelling in a much smaller time scale. Is this the quantum 
entanglement state? We will discuss this in another paper: The Origin 
of Quantum Mechanics and the Sub-structure of Elemental Particles 
(Figure 4). 

Figure: 4 Quantum entanglement state 

Instead of inventing many schemes to avoid infinities in the 
perturbation theory of QED and QCD, physicists shall focus on 
finding the experimental data to compare with the Laplace 
transformation to determine the 𝑠𝑠𝜇𝜇. By studying the scale factor in the 
momentum space (or 𝑠𝑠𝜇𝜇 of the Laplace transformation), the virtual 
particle emitting behaviors will be revealed which shall in turn indicate 
the internal structure of the elemental particles. In the future paper 
regarding the origin of quantum mechanics, the virtual particle 
behaviour will be studied to derive the quantum assumptions. The 
scale factor invariant of physics can also be defined as different 
constants (or the global scale) of the physics law. Dirac’s large number 
principle connects the distance scale of the universe to the scale of the 
nuclei, and the time scale of the universe to the time scale of strong 
interaction. In the continuation of the CCSI field theory and the 
origin of quantum mechanics theory, the scale factor will be re-visited 
through the different physics constants. 



Pan 

8    J Mod Appl Phy Vol 6 No 4 December 2023 

REFERENCES 

1. Sakurai JJ. Advanced quantum mechanics. Pearson Educ.
India. 1967.

2. Feynman R, Morinigo Fernando B, Wagner William G.
Feynman Lectures on Gravitation. Read. Mass,:
AddisonWesley. 1995. 

3. Hamber HW. Quantum gravitation: The Feynman path
integral approach. Springer Sci. Bus. Media. 2008.

4. Smolin L. The trouble with physics: the rise of string theory, 
the fall of a science, and what comes next. HMH; 2007.

5. Dirac PA. Cosmological models and the large numbers
hypothesis. Proceedings of the Royal Society of London. A.
Math. Phys. Sci. 1974; 338(1615):439-46.

6. Eddington AS. Preliminary note on the masses of the
electron, the proton, and the universe. 1931; 27(1): 15-19.
Camb. Univ. Press

7. William O. Straub. Weyl theory.

8. Aharonov Y, Bohm D. Significance of electromagnetic
potentials in the quantum theory. Physical Review. 1959;
115(3):485. 

9. Halzen Martin. Quarks and Leptons; Wiley. 1984. 


